Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

L. Caputi - C. Collari

On finite generation in magnitude (co)homology, and its torsion

created by collari on 15 Feb 2023
modified on 07 Oct 2024

[BibTeX]

Published Paper

Inserted: 15 feb 2023
Last Updated: 7 oct 2024

Journal: Bulletin of the London Mathematical Society
Year: 2023
Doi: 10.1112/blms.13143

ArXiv: 2302.06525 PDF

Abstract:

The aim of this paper is to apply the framework, which was developed by Sam and Snowden, to study structural properties of graph homologies, in the spirit of Ramos, Miyata and Proudfoot. Our main results concern the magnitude homology of graphs introduced by Hepworth and Willerton. More precisely, for graphs of bounded genus, we prove that magnitude cohomology, in each homological degree, has rank which grows at most polynomially in the number of vertices, and that its torsion is bounded. As a consequence, we obtain analogous results for path homology of (undirected) graphs. We complement the work with a proof that the category of planar graphs of bounded genus and marked edges, with contractions, is quasi-Gr\"obner.

Credits | Cookie policy | HTML 5 | CSS 2.1