Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

G. Faraco

Distances on the moduli space of complex projective structures

created by faraco on 09 Nov 2022


Published Paper

Inserted: 9 nov 2022
Last Updated: 9 nov 2022

Journal: Expositiones Mathematica
Year: 2019

ArXiv: 1812.00695 PDF


Let $S$ be a closed and oriented surface of genus $g$ at least $2$. In this (mostly expository) article, the object of study is the space $\mathcal{P}(S)$ of marked isomorphism classes of projective structures on $S$. We show that $\mathcal{P}(S)$, endowed with the canonical complex structure, carries exotic hermitian structures that extend the classical ones on the Teichm\"uller space $\mathcal{T}(S)$ of $S$. We shall notice also that the Kobayashi and Carath\'eodory pseudodistances, which can be defined for any complex manifold, can not be upgraded to a distance. We finally show that $\mathcal{P}(S)$ does not carry any Bergman pseudometric.

Credits | Cookie policy | HTML 5 | CSS 2.1