Geometria Complessa e Geometria Differenziale
Geometria Complessa e Geometria Differenziale
home | mail | papers | authors | news | seminars | events | open positions | login

D. Conti - V. Del Barco - F. A. Rossi

Uniqueness of ad-invariant metrics

created by rossi on 31 Mar 2021
modified on 18 May 2025

[BibTeX]

Published Paper

Inserted: 31 mar 2021
Last Updated: 18 may 2025

Journal: Tôhoku Math. J. (2)
Volume: 76
Number: 3
Pages: 317–359
Year: 2024
Doi: 10.2748/tmj.20230104

ArXiv: 2103.16477 PDF

Abstract:

We consider Lie algebras admitting an ad-invariant metric, and we study the problem of uniqueness of the ad-invariant metric up to automorphisms. This is a common feature in low dimensions, as one can observe in the known classification of nilpotent Lie algebras of dimension $\leq 7$ admitting an ad-invariant metric. We prove that uniqueness of the metric on a complex Lie algebra $\mathfrak{g}$ is equivalent to uniqueness of ad-invariant metrics on the cotangent Lie algebra $T^*\mathfrak{g}$; a slightly more complicated equivalence holds over the reals. This motivates us to study the broader class of Lie algebras such that the ad-invariant metric on $T^*\mathfrak{g}$ is unique. We prove that uniqueness of the metric forces the Lie algebra to be solvable, but the converse does not hold, as we show by constructing solvable Lie algebras with a one-parameter family of inequivalent ad-invariant metrics. We prove sufficient conditions for uniqueness expressed in terms of both the Nikolayevsky derivation and a metric counterpart introduced in this paper. Moreover, we prove that uniqueness always holds for irreducible Lie algebras which are either solvable of dimension $\leq 6$ or real nilpotent of dimension $\leq 10$.

Credits | Cookie policy | HTML 5 | CSS 2.1