
DEPARTMENT OF MATHEMATICS

MASTER DEGREE IN MATHEMATICS

Well-posedness properties of geometric variational problems:
existence, regularity and uniqueness results

Supervisor
Prof. Andrea Marchese

Candidate
Gianmarco Caldini

ACADEMIC YEAR: 2021/2022

DATE OF DISCUSSION: OCTOBER 21, 2022





Abstract

This thesis is devoted to the study of well-posedness properties of some geometric varia-
tional problems : existence, regularity and uniqueness of solutions. We study two specific
problems arising in the context of geometric calculus of variations and sharing strong
analogies: the Plateau’s problem and the optimal branched transport problem. The first
part of the thesis discusses the existence theory. Both problems are formulated in the
language of Federer and Fleming’s theory of currents. After an exposition of the main re-
sults, we will present the core ideas of the (interior) regularity theory for area-minimizing
currents and for optimal transport paths. The last part of the thesis contains two origi-
nal results: the generic uniqueness of solutions both for the Plateau’s problem (in any
dimension and codimension) and for the optimal branched transport problem.
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Introduction

Motivation and comments

In the last four or five decades there has been growing interest in building robust theories
to address geometric variational problems. The archetypal geometric variational problem
is the celebrated Plateau’s problem, named in honor of the Belgian physicist Joseph
Plateau, who extensively studied the structure of soap films. In fact, the Plateau’s
problem had been formulated much earlier in the second half of the eighteenth century
by Lagrange, who asked the following question:

“Given a closed curve in R3, can one always find a surface of minimal area among all
surfaces that bound the curve?”

Many versions of this problem have been developed through the years, addressing the
Plateau’s problem as a boundary value problem for area-minimizing surfaces. The first
successful solution to the Plateau’s problem in a concrete case was delivered by Schwarz
in 1865. Nevertheless, only in 1930 a general existence theory was finally achieved by
Radó [86] and Douglas [54].

The extension of the Plateau’s problem to any dimension and codimension took many
more years and the joint effort of some of the most brilliant mathematicians of the twen-
tieth century, including Whitney, Reifenberg, Almgren, De Giorgi and Bombieri, just to
mention a few. The ultimate solution to the Plateau’s problem can be considered the
work by Federer and Fleming [58], developing a measure-theoretic notion of generalized
surfaces called integral currents. The “generalized Plateau’s problem” can be stated as
follows1:

“Given a k-dimensional integral current S without boundary in Rd, find a
(k + 1)-dimensional integral current T1 such that ∂T1 = S and M(T1) is minimized
among all (k + 1)-dimensional integral currents T with the same boundary ∂T = S.”

As it is often the case in the calculus of variations, in order to gain “enough compactness”
to solve a variational problem one has to enlarge the class of competitors, giving up some
a priori regularity assumptions. Following this fundamental idea, many other notions
of generalized surfaces have been developed: besides Federer and Fleming’s theory of

1For the precise definitions we refer to Chapter 1.
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integral currents, it is worth mentioning Caccioppoli and De Giorgi’s finite perimeter
sets, see [33], and Almgren and Allard’s rectifiable varifolds, see [1].

Remarkably, it turns out that area-minimizing surfaces may exhibit singularities.
Hence, a whole theory has been developed to understand how regular the aforementioned
area-minimizing generalized surfaces are. In cases where singularities appear, one would
like to estimate their “size” and structure and, possibly, to develop a full classification.
There is a huge difference between the regularity theory for generalized area-minimizing
surfaces depending on the codimension of the ambient space: indeed, the regularity
theory deeply differs between the codimension one, see [3, 35, 36, 56, 60, 96], and the
codimension higher-than-one cases, see [4, 6, 38, 42, 43, 44, 45, 46].

Furthermore, the very innocent question of “how many minimal surfaces can be
spanned by a given closed curve” turns out to be one of the most challenging related
to the Plateau’s problem. Indeed, the answer to this question is still not known in
full generality. The first partial answers go back to the first decades of the twentieth
century, due to the works by Radó, Courant, Tromba, Nitsche, Tomi and many others.
Uniqueness for a particular boundary curve in R3 is known only in very restrictive cases
and many examples have been provided of boundaries admitting even infinitely many
minimizers, see [32] and [77]. As a result, different approaches have been developed
to study uniqueness questions. Arguably, the most fruitful was by means of Baire
categories, as shown by Böhme and Tromba [14] and, more recently, by Morgan [78,
79, 80]. Their main results establish that under some (rather restrictive) conditions, the
set of curves which bound a unique minimizer is topologically large.

Several variants of the Plateau’s problem have been developed in the last decades,
each aiming at the minimization of different notions of energy. One example comes
from optimal transport : the problem to find the best way to carry a given source onto a
given target. Such problem witnessed an impressive progression in the last thirty years,
developing deep connections with many fields of mathematics and serving as a model
for biological and human-designed systems. Extensions of the original formulation of
the optimal transport problem, due to Monge [75], have been studied for transportation
systems that privilege group flows rather than spread-out processes, leading to optimal
transport networks with peculiar ramified structures: this class of problems is nowadays
known as optimal branched transport. Starting from the work by Xia [110], it has been
possible to develop the modern theory of optimal branched transport as a Plateau-type
problem, see for instance [13, 16, 17, 18, 19, 20, 21, 22, 28, 72, 73, 76, 84]. More precisely,
the optimal branched transport problem can be formulated as a boundary value problem
for 1-dimensional currents minimizing a fractional power of the mass functional, called
α-mass. Hence, it is not surprising how the theory of currents is a fruitful tool to study
well-posedness properties in optimal branched transport theory.

The purpose of this thesis is to study fundamental properties of the two aforemen-
tioned examples of geometric variational problems, in particular existence, regularity and
uniqueness results. We will always try to emphasize the (numerous) analogies between
the theories. We conclude by mentioning that the original results presented here are part
of the work done by the author during his Master studies and have been obtained in
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collaboration with A. Marchese and S. Steinbrüchel. We conclude this brief introduction
by remarking that the well-posedness of geometric variational problems is still a live and
flourishing research field, full of open questions that need to be investigated for years to
come.

Guide to the thesis

We briefly summarize the content of each chapter below.

Chapter 1: Existence results

The main goal of Chapter 1 is to present the existence theory for the solutions to the
Plateau’s problem (referred to as area-minimizing integral currents) and to the optimal
branched transport problem (referred to as optimal transport paths). Both theories
rely on the general notion of rectifiable and normal currents in the sense of Federer
and Fleming. Hence, in Section 1.1 we will introduce the main notation and recall
some preliminaries about measure theory and multilinear algebra. In Section 1.2 we
will introduce the theory of currents (in the sense of de Rham), stating Federer and
Fleming’s celebrated closure theorem, see [58], and showing the existence of solutions
to the Plateau’s problem for integral currents. In Section 1.3 we will then introduce
the main framework of optimal branched transport theory, proving the existence of an
optimal transport path with finite cost.

Chapter 2: Regularity results

The main goal of Chapter 2 is to present the regularity theory for area-minimizing
integral currents and for optimal transport paths. In Section 2.1 we will investigate the
interior regularity theory for area-minimizing integral currents. In Section 2.1.1 we will
highlight the main ideas behind the proof of the De Giorgi-Allard ε-regularity theorem,
see [35] and [1]. We are going to prove a simplified version of it in the language of Federer
and Fleming’s theory of currents that will highlight the main ideas of the theory such
as the excess decay and the harmonic approximation. In doing so, we aim at a more
accessible introduction to this theory, avoiding on purpose some technical details. In
Section 2.1.2, we will survey the main difficulties to extend De Giorgi-Allard’s regularity
theory to any codimension. We will present Almgren’s theory of Dir-minimizing Q-
valued functions and describe the main issues in passing from this (linear) setting to the
nonlinear version of Almgren’s partial regularity theorem. At the end we collect some
of the most interesting open problems in the field. In this presentation we will mostly
follow [38, 42]. Finally, in Section 2.2, we will present the main result in the regularity of
optimal branched transport, which is due to Xia [111]. We will observe that a technical
passage, which is only partially justified in the current literature, can be obtained as a
consequence of the recent stability property for optimal transport paths, see [29].
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Chapter 3: Uniqueness results

The main goal of Chapter 3 is to present the uniqueness theory for the Plateau’s problem
and for the optimal branched transport problem. After a brief discussion about the main
uniqueness and nonuniqueness theorems for solutions of these two geometric variational
problems, we will pass to the most original contributions of this thesis: in Section 3.1 we
exploit Almgren’s regularity theory in higher codimension to prove that, generically (in
the sense of Baire categories), every integral (m− 1)-current without boundary spans a
unique minimizer in Rm+n. In Section 3.2 we prove the generic uniqueness of minimizers
of the optimal branched transport problem.
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Chapter 1

Existence results

The main goal of Chapter 1 is to present the existence theory for the solutions to the
Plateau’s problem and to the optimal branched transport problem, both relying on
Federer and Fleming’s theory of currents.

We do not aim to be exhaustive and most of the proofs will be omitted: we will focus
on definitions and results that will be relevant for the sequel. In Section 1.1 we introduce
the main notation and recall some preliminaries about measure theory and multilinear
algebra. In Section 1.2 we introduce the theory of currents (in the sense of de Rham),
stating Federer and Fleming’s celebrated closure theorem, see [58], which leads to the
solution of the Plateau’s problem for integral currents. In Section 1.3 we will introduce
the main framework of optimal branched transport theory, proving the existence of an
optimal transport path with finite cost. For a complete treatise on the subjects, we refer
the reader to [61], [94] or [57] for the theory of currents and to [12] for the theory of
optimal branched transport.

1.1 Preliminaries

Preliminaries in measure theory

We denote by B(Rd) the Borel σ-algebra of Rd, that is the smallest σ-algebra containing
all open sets of Rd. We will denote by µ a positive Borel measure, which is a measure
such that all Borel sets are measurable.

Definition 1.1.1. A measure µ is called Borel regular if it is Borel and if for every
µ-measurable set A there exists B Borel set such that B ⊃ A and µ(A) = µ(B). The
measure µ is said to be a Radon measure if it is Borel-regular and µ(K) <∞ for every
compact subset K of Rd.

Given A ⊂ Rd, the restriction of µ on A is the measure

(µ A)(B) := µ(A ∩B) for every Borel set B.

We denote by L1(X,µ) the space of all (equivalence classes of) functions f : X → R
which are µ-integrable.

1



2 1. Existence results

Definition 1.1.2. An extended real valued set function ν : B(Rd) → R is a signed
measure if ν assumes at most one of the values +∞, −∞, ν(∅) = 0 and if

ν (∪∞
i=1Ai) =

∞∑
i=1

ν(Ai)

for each sequence of disjoint sets (Ai)i ∈ B(Rd)N, where the series either converges
absolutely or diverges to +∞ or −∞.1

Given a convex compact set K ⊂ Rd, we denote by M(K) the space of signed Radon
measures on K and by M+(K) the subspace of positive measures.

Definition 1.1.3. If µ ∈ M(K) we define its total variation measure ||µ||: B(Rd) →
[0,∞] as follows:

||µ||(A) := sup

{
∞∑
i=1

|µ (Ai)| : (Ai)i ∈ B(Rd), Ai pairwise disjoint, A = ∪∞
i=1Ai

}

If µ is a real measure, that is µ takes values in R, we define its positive and negative
parts respectively as

µ+ :=
||µ||+µ

2
and µ− :=

||µ||−µ
2

.

This gives µ = µ+ − µ− and ||µ||= µ+ + µ−. The pair (µ+, µ−) is usually called Jordan
decomposition of µ. The mass of µ is the quantity M(µ) := ||µ||(K).

Definition 1.1.4. Let µ ∈ M+(K), the support of µ is defined as

supp(µ) := {x ∈ K : µ(U) > 0 for every neighbourhood U of x}.

If µ ∈ M(K) we call the support of µ the support of its total variation measure ||µ||.
We say that a measure µ is finite atomic if its support is a finite set.

Theorem 1.1.5 (Lusin’s Approximation Theorem). Let K be a locally compact and
separable metric space and µ a Borel measure on K. Let f : K → R be a µ-measurable
function vanishing outside of a set with finite measure. Then for any ε > 0 there exists
a continuous function g : K → R such that

µ({x ∈ K : g(x) ̸= f(x)}) < ε.

Let C0
c

(
Rd,Rk

)
be the space of continuous functions from Rd to Rk with compact

support. We endow the space C0
c

(
Rd,Rk

)
with the topology of uniform convergence on

compact sets, that can be described as follows:

1From now on we will adopt the slight abuse of notation writing (Ai)i ∈ B(Rd) for sequences with
values in B(Rd).
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Definition 1.1.6. A sequence (φh)h ∈ C0
c

(
Rd,Rk

)
converges to φ in C0

c if there exists a
compact open set A such that supp (φh) ⊂ A for all h, and φh → f uniformly on A.

The total variation of a linear functional L : C0
c

(
Rd,Rk

)
→ R is the quantity

|L|(A) := sup
{
L(φ) : φ ∈ C0

c

(
Rd,Rk

)
, ∥φ∥∞⩽ 1, supp(φ) ⊂ A

}
.

A linear functional L is bounded if |L|(A) <∞.
There is a close link between bounded linear functionals on C0

c

(
Rd,Rk

)
and Radon

measures.

Theorem 1.1.7 (Riesz representation theorem). Let L be a bounded linear functional
on C0

c

(
Rd,Rk

)
. Then there exist a Radon measure µ and a Borel function f : Rd → Rk

such that |f |= 1 µ-almost everywhere and

L(φ) =

∫
φ · fdµ, for all φ ∈ C0

c

(
Rd,Rk

)
,

where φ · f denotes
∑k

j=1 φj fj. Moreover, µ(U) = |L|(U) for every open set U .

In what follows, we shall refer to fµ as a vector-valued Radon measure and we
denote the space of Radon measures on Rd with values in Rk by M(Rd,Rk). Thanks
to the identification of M(Rd,Rk) with the dual space of a separable Banach space, it
is natural to endow it with the weak∗-topology. In particular we say that a sequence
(µh)h ∈ M(Rd,Rk) converges weakly∗ to µ, and we write µh

∗
⇀ µ, if

lim
h→∞

∫
φ · dµh =

∫
φ · dµ, ∀φ ∈ C0

c

(
Rd,Rk

)
.

By classical functional analysis, the weak∗-topology on a space with separable predual
enjoys sequential compactness:

Theorem 1.1.8 (Sequential compactness for measures). Let (µh)h ∈ M(Rd,Rk). As-
sume that

sup
h

|µh| (A) < +∞ ∀A ⊂⊂ Rd open.

Then there exists a subsequence
(
µhj

)
and a Radon measure µ, such that µhj

∗
⇀ µ.

We now recall the notions of Hausdorff measure and the one of rectifiable set. Haus-
dorff measures are among the most important measures. They allow us to define a notion
of dimension of sets in Rd and provide us with k−dimensional measures in Rd for any
k, 0 ≤ k ≤ d (and also in any metric space).

Let k be a nonnegative real number. We denote by ωk the volume of the unit ball
in Rk for k = 1, 2, 3, . . ., we set ω0 := 1 and we let ωk any convenient fixed constant for
nonintegers k. Since the measure of the unit d-ball is given (for d = 1, 2, . . .) by

ωd =
πd/2

Γ(1 + d/2)
,



4 1. Existence results

where Γ(t) is the Euler’s gamma function Γ(t) :=
∫ +∞
0

st−1e−sds, we can take as ωk the
following definition:

ωk :=
πk/2

Γ(1 + k/2)
.

Hence, for k ≥ 0, 0 < δ ≤ ∞ and E ⊂ Rd, we define the Hausdorff k-dimensional
δ-premeasure as

Hk
δ (E) :=

ωk

2k
inf

{∑
i

(diamFi)
k : diam (Fi) < δ,E ⊂

⋃
i

Fi

}
.

SinceHk
δ is a decreasing function of δ we can define the Hausdorff k-dimensional measure

in Rd as
Hk(E) := sup

δ>0
Hk

δ (E) = lim
δ→0+

Hk
δ (E).

Recall that on Rd we have Hd = Ld as measures, where Ld is the d−dimensional
Lebesgue measure, see [69].

Rectifiable sets are a family of sets that generalize the notion of C∞ surface.

Definition 1.1.9. A set E ⊂ Rd is called Hk-countably k-rectifiable (or simply k-
rectifiable) if it is Hk−measurable and E ⊂

⋃∞
j=0Ej, where

1. Hk (E0) = 0;

2. for j ≥ 1 we have that Ej = Fj

(
Rk
)
, where Fj : Rk → Rd is a Lipschitz function.

1.1.10. Remark. The second condition in Definition 1.1.9 can be equivalently replaced
with one of the following conditions:

(2.1) Ei ⊆ f (Ai), where Ai ⊆ Rk is an open set and fi ∈ C1(Ai,Rd);

(2.2) Ei ⊆ Σi, where each Σi is a k-dimensional submanifold of class C1 in Rd.

In the following we will always assume that a k−rectifiable set E has locally finite
Hk-measure.

Rectifiable sets have nice tangential properties and they are considered a natural
generalization of C∞ surfaces since for rectifiable sets a well-defined notion of tangent
space can be given for almost all points.

We denote by Gr(k, d) the Grassmannian manifold of the (unoriented) k−dimensional
linear subspaces in Rd, that is

Gr(k, d) := {vector subspaces W ⊂ Rd | dimW = k}.

Take V ∈ Gr(k, d) and E ⊆ Rd Borel and Hk-locally finite. For all x ∈ E and for all
r > 0, we denote

Ex,r :=
1

r
(E − x)

the set obtained applying to E the homothety that maps B(x, r), which is the ball of
center x and radius r, into B(0, 1).
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Definition 1.1.11. Given x ∈ E, we say that V is an approximate tangent space to E
at x if Hk Ex,r

∗
⇀ Hd V locally in the sense of measures as r → 0+, that is

lim
r→0+

∫
Ex,r

g(y)dHk(y) =

∫
V

g(y)dHk(y) ∀g ∈ C0
c (Rd).

1.1.12. Remark. When the approximate tangent plane exists at some point x ∈ E it is
unique (since it is a limit) and will be denoted by TxE.

1.1.13. Remark. If the set E is a submanifold of class C1, then the tangent space and
the approximate tangent space coincide at every point. Hence there is no ambiguity
between the classical definition of TxE and Definition 1.1.11.

It is also remarkable the fact that the existence of the approximate tangent space
TxE at Hk-almost all points characterizes k-rectifiable sets:

Theorem 1.1.14. [94, Theorem 11.6] Suppose that E is Hk-measurable with locally
finite Hk-measure. Then E is k-rectifiable if and only if E admits the approximate
tangent space TxE for Hk-a.e. x ∈ E.

Multilinear algebra and Stokes’ theorem

Now we briefly introduce the main notions in multilinear algebra that allow us to define
the notion of current in the sense of de Rham. We highlight that we do not aim at full
generality, nor at the best algebraic way to describe the exterior algebra of differential
forms; instead, we are going to limit ourselves to the minimum instrumental requirements
to be able to describe Federer and Fleming theory of normal and integral currents, see
[58], keeping always in mind our goal: the solution of the Plateau’s problem.

In the following let V be a finite dimensional vector space over R and V ∗ its dual.
Denote Sn the group of permutations of {1, . . . , n}; given σ ∈ Sn, we denote sgn(σ) the
sign of the permutation σ.

Definition 1.1.15. A k-linear alternating form (or k-covector) on V is a multilinear
function

α : V × . . .× V︸ ︷︷ ︸
k times

→ R

with the following property: for all v1, . . . , vk ∈ V , for all permutation σ, there holds

α
(
vσ(1), . . . , vσ(k)

)
= sgn(σ)α (v1, . . . , vk) .

The space of k-covectors on V is denoted by Λk(V ).

1.1.16. Remark. If k = 0, we set Λ0(V ) := R identified with the constant functions and
Λ1(V ) ≃ V ∗. One can immediately see that Λk(V ) is a vecotr space. If k > dim(V ),
then Λk(V ) = {0} and if k = dim(V ), then dim

(
Λk(V )

)
= 1.
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Considering the graded vector space structure naturally induced for every k ∈ N
by the subspaces Λk(V ), it is possible to promote it into a graded algebra defining an
internal product, called wedge product, defined as follows:

Definition 1.1.17. Let α ∈ Λh(V ) and β ∈ Λk(V ) be covectors. We define α ∧ β to be
the element of Λh+k given by

α ∧ β (v1, . . . , vh+k) :=
1

(h+ k) !

∑
σ∈Sh+k

sgn(σ)α
(
vσ(1), . . . , vσ(h)

)
β
(
vσ(h+1), . . . , vσ(h+k)

)
If V = Rd let e1, . . . , ed be the standard basis with dual basis dx1, . . . , dxd so that

dxi (ej) = δij. We shall use the standard notations for ordered multi-indices: for every
positive integer k ≤ d, we denote I(k, d) := {(i1, . . . , ik) | 1 ≤ i1 < . . . < ik ≤ d}. For
every index I ∈ I(k, d) we define dxI := dxi1 ∧ . . . ∧ dxik . Analogously we will do for
eI := ei1 ∧ . . . ∧ eik .

Proposition 1.1.18. The collection {dxI}I∈I(k,d) is a basis for Λk(Rd). In particular,
for all α ∈ Λk(Rd) we can write

α =
∑

I∈I(k,d)

αIdxI

where αI := α(ei1 , . . . , eik) for all I = (i1, . . . , ik). Moreover, dim Λk(Rd) =
(
d
k

)
.

The dual space of Λk(Rd) is called the space of k-vectors and it is denoted by Λk(Rd).
Before defining it properly we define a subclass of k-vectors that has a geometric meaning:
simple k-vectors.

Definition 1.1.19. Let k be a positive integer. Given (v1, . . . , vk), (ṽ1, . . . , ṽk) ∈ (Rd)k,
we define the equivalence relation (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) if

α (v1, . . . , vk) = α (ṽ1, . . . , ṽk) ∀α ∈ Λk(Rd).

The elements of the quotient set with respect to ∼, denoted [v1, . . . , vk], are called simple
k-vectors.

1.1.20. Remark. (Rd)k/∼ is not in general a vector space.

The following proposition shows the geometric meaning of simple k-vectors. Two
elements in the same equivalence class span the same k-dimensional space.

Proposition 1.1.21. Let (v1, . . . , vk) and (ṽ1, . . . , ṽk) ∈ (Rd)k then:

1. (v1, . . . , vk) ∼ (0, . . . , 0) if and only if v1, . . . , vk are linearly dependent.

2. (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) ≁ (0, . . . , 0) if and only if

Span {v1, . . . , vk} = Span {ṽ1, . . . , ṽk}

and the change of basis matrix M (i.e. for all i, ṽi =
∑

j Mi,j vj) has det(M) = 1.
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Given v1, . . . , vk ∈ Rd, let R (v1, . . . , vk) :=
{∑k

j=1 λjvj | λj ∈ [0, 1]
}
be the rectangle

generated by v1, . . . , vk. Note that if (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) ≁ (0, . . . , 0) then by the
area formula Hk (R (ṽ1, . . . , ṽk)) = Hk (R (v1, . . . , vk)) since det(M) = 1. Hence we can
define the following map that is called the “norm” of the simple k-vector2 [v1, . . . , vk]:

| [v1, . . . , vk] | := Hk (R (v1, . . . , vk)) . (1.1.1)

Recall that an orientation of a vector space is an equivalence class of bases with
respect to the following equivalence relation: let (v1, . . . , vn) , (ṽ1, . . . , ṽn) ∈ (Rd)k, then
(v1, . . . , vn) ≈ (ṽ1, . . . , ṽn) if and only if the change of basis matrix has positive deter-
minant. Hence we can state the following proposition telling us that simple unitary (in
norm) k-vectors represent oriented k-planes:

Proposition 1.1.22. Consider the map ψ which associates to a simple unitary k-vector
[v1, . . . , vk] the k-dimensional subspace Span {v1, . . . , vk} oriented by (v1, . . . , vk). This
map is well-defined and it is a bijection.

We define now a vector space that includes the space of simple k-vectors. The space
of k-vectors on Rd is defined as Λk(Rd) := Λk

(
(Rd)∗

)
. We define the duality pairing of

Λk(Rd) and Λk(Rd) as the bilinear form ⟨·, ·⟩ : Λk(Rd) × Λk(Rd) → R by setting for all
I, J ∈ I(k, d)

⟨dxI , eJ⟩ := δI,J

In particular, ⟨·, ·⟩ gives an isomorphism between Λk(Rd) and
(
Λk(Rd)

)∗
. Moreover by

bilinearity of ⟨·, ·⟩ we can also write for all α ∈ Λk(Rd) and for all (v1, . . . , vk) ∈ (Rd)k

that ⟨α, v1 ∧ · · · ∧ vk⟩ = α (v1, . . . , vk).

1.1.23. Remark. Simple k-vectors can be embedded in Λk(Rd) by identifying [v1, . . . , vk]
with v1 ∧ · · · ∧ vk. Indeed it easy to see that (v1, . . . , vk) ∼ (ṽ1, . . . , ṽk) if and only if
v1 ∧ · · · ∧ vk = ṽ1 ∧ · · · ∧ ṽk.

1.1.24. Remark. There are k-vectors that are not simple: τ = e1 ∧ e2 + e3 ∧ e4 ∈ Λ2(R4)
is not simple since τ ∧ τ ̸= 0.

There are two natural choices of norms on Λk(Rd). The first is the Euclidean norm
|·| defined for w =

∑
I∈Ik,d wIeI ∈ Λk(Rd) as

|w|:=
√∑

I∈Ik,d

w2
I .

1.1.25. Remark. The Euclidean norm of a simple k-vector agrees with the “norm” defined
in (1.1.1). More precisely, given v1 ∧ · · · ∧ vk ∈ Λk(Rd) we have that

|v1 ∧ · · · ∧ vk| = Hk (R (v1, . . . , vk)) .

2Which is actually not a norm, since it is not defined on a vector space.
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The second norm is the so-called mass norm, defined to be the largest norm ∥·∥ on
Λk(Rd) such that

∥v1 ∧ · · · ∧ vk∥= |v1 ∧ · · · ∧ vk| ∀v1, . . . , vk ∈ Rd.

Mass norm and Euclidean norm agree on simple k-vectors and one can see that the
unit ball with respect to ∥·∥ is the convex envelope of the set of simple k-vectors with
unit “norm”. Once a norm is defined on Λk(Rd), we get a dual norm on Λk(Rd), defined
as follows:

Definition 1.1.26. The dual norm ∥·∥∗ induced by the mass norm is called comass
norm, that is

∥α∥∗= sup{⟨α,w⟩ | ∥w∥≤ 1} ∀α ∈ Λk(Rd).

Now we can introduce differential forms and define a norm on the space of differential
forms, making it into a well-behaved topological space.

Let Ω ⊂ Rd be an open set. A k-form ω on Ω is a section of the k-alternating tensor
bundle of Ω. Since we are in Rd, we can particularize the above definition saying that a
differential k-form ω on Rd is a k-covector field, that is a map

ω : Rd → Λk(Rd),

that, in other words, means ω(x) is just is a k-alternating multilinear map from Rd to
R, for all x ∈ Ω. We call k the degree of the form.

Fixed the standard basis of Λk(Rd), we can write ω in local coordinates as

ω(x) =
∑

I∈I(k,d)

ωI(x)dxI ,

where the coefficients ωI(x) are real-valued functions on Rd: depending on their regu-
larity we say that the k-differential form has that regularity; if we say that the form is
smooth we mean that ωI(x) are C∞ functions. The support of ω is defined as the closure
of the set

{
x ∈ Rd : ω(x) ̸= 0

}
and we will denote it as supp(ω); we say that the form

has compact support if supp(ω) is compact.

Definition 1.1.27. The exterior derivative of a smooth differential k-form ω is the
differential (k + 1)-form:

dω(x) =
∑

I∈I(k,d)

dωI ∧ dxI ,

where

dωI(x) =
d∑

j=1

∂wI

∂xj
(x)dxj.
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A k-form ω is said to be closed if dω = 0, while if there exists a (k − 1)-form η such
that dη = ω, then ω is said to be exact. One of the most important properties of the
exterior derivative d is that d ◦ d = 0 (giving rise to the beautiful and elegant theory of
de Rham cohomology).

Towards the statement of Stokes’ theorem and exploiting the geometric meaning of
simple k-vectors, we define a notion of orientation of a k-submanifold3.

Definition 1.1.28. Let Σ be smooth k-submanifold in Rd. An orientation of Σ is a
continuous map τΣ : Σ → Λk(Rd) such that τΣ(x) is unitary and spans TxΣ for every
x ∈ Σ.

An orientation of Σ induces a canonical orientation of ∂Σ the boundary of Σ, namely
the one such that

τΣ(x) = ν(x) ∧ τ∂Σ(x) for every x ∈ ∂Σ, (1.1.2)

where ν is the outer normal to ∂Σ.
Assume Σ is a k-surface oriented by τΣ. The integral of a differential k-form ω on it

can be defined as ∫
Σ

ω :=

∫
Σ

⟨ω(x), τΣ(x)⟩ dHk(x),

where for every x ∈ Rd, ⟨ω(x), τΣ(x)⟩ is the duality pairing of a k-covector ω(x) acting
on a simple k-vector τΣ(x).

For its relevance in the sequel, we introduce the notion of pull-back of a differential
k-form on Rm according to a smooth map f : Rd → Rm.

Definition 1.1.29. For any differential k-form ω on Rm, we define its pull-back f ∗ω on
Rd by setting for all p ∈ Rd and for all v1 ∧ . . . ∧ vk ∈ Λk(Rd)

⟨f ∗ω(p), v1 ∧ . . . ∧ vk⟩ := ⟨ω(f(p)), df(p)v1 ∧ . . . ∧ df(p)vk⟩ .

This map is extended to all k-vectors by linearity. In the case k = 0, the formula reduces
to the composition of functions f ∗ω = ω ◦ f .

Merging together two differential operators (the exterior derivative d and the integral∫
) with a topological one (the boundary ∂), Stokes’ theorem can be considered one of

the most important (and elegant) results in the theory of integration.

Theorem 1.1.30 (Stokes’ theorem). Let Σ be a compact oriented submanifold of di-
mension k of class C1 with ∂Σ of class C1 and let ω be a (k − 1)-form of class C1.
Then ∫

Σ

dω =

∫
∂Σ

ω.

See for instance [69] for the proof.

3It can be proven to be equivalent to the classical definition of orientation given through transition
maps which preserve the orientation of the tangent space.
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Corollary 1.1.31. Let Σ be a k-dimensional oriented submanifold with ∂Σ = ∅ and let
ω be a (k − 1)-form of class at least C1. Then

∫
Σ
dω = 0.

For the next section, it is important to consider the space Dk(U) of smooth compactly
supported differential k-forms on U where U ⊂ Rd is an open set4. Since the space is
sequential, we can characterize its topology by means of converging sequences. There are
more abstract ways to define the following topology on Dk(U), but we consider useful to
provide an explicit description of converging sequences to highlight the similarities with
the one on the set C0

c in Definition 1.1.6.

Definition 1.1.32. A sequence (ωn)n∈N ∈ Dk(U), that in local coordinates takes the
form

ωn(x) =
∑

I∈I(k,d)

ωn
I (x)dxI ,

is said to converge to ω ∈ Dk(U) as n → ∞ if there exists a compact set K ⊂ U such
that

1. supp(ωn
I ) ⊂ K for any I ∈ I(k, d) and for any n ∈ N,

2. for every choice of the multi-index α we have Dαωn
I → DαωI uniformly in K for

every I ∈ I(k, d).

1.1.33. Remark. Note that in local coordinates we are just equipping Dk(U) with the
topology on the predual of the space of distributions D0(U): there is indeed the following
identification

Dk(U) ≃
(
D0(U)

)|I(k,d)|
.

The topology in Definition 1.1.32 turns Dk(U) into a locally convex metrizable and
separable topological vector space: nice properties to be able to deal with compactness
in its dual space.

1.2 The Federer-Fleming theory of integral currents

The first appearance of the notion of current5, in a less general and less precise form, was
at the beginning of the thirties by Georges de Rham in [50] and [51]. It was only after
Schwartz’s introduction of the concept of distribution in 1945, see [92], that de Rham
reframed its definition from the one dealing with homologies on forms to the cleaner one
that we are going to define now.

4In the literature there are many notations to refer to the space of smooth compactly supported
differential k-forms, including the most common Ωk

c (U). We will stick to the notation mostly used in
the context of geometric measure theory to highlight the duality with currents.

5The choice of the term “current” is motivated by the fact that in a 3-dimensional space “1-
dimensional currents” can be interpreted as electrical currents and indeed, in [50] and [51], de Rham
thought of them as cables carrying an electrical current of unit intensity.
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In this section, nevertheless, we are more interested in the notion of current seen
as a measure-theoretic generalization of an oriented surface. From this point of view,
its theory was brought to fruition by Federer and Fleming in the late fifties to prove
the existence of an area-minimizing surface spanning a given contour: the Plateau’s
problem.

We will now focus on the introduction of the space of currents as the dual space
of smooth and compactly supported differential forms and we will define a generalized
version of the Plateau’s problem in the language of currents. Then we will introduce all
the needed machinery to solve the generalized Plateau’s problem and to describe further
applications in the sequel of this thesis.

1.2.1 Currents

Let U ⊂ Rd be an open set and 0 ≤ k ≤ d.

Definition 1.2.1. A k-dimensional current in U is a continuous linear functional on
Dk(U), endowed with the topology in Definition 1.1.32.

The space of k-dimensional currents in U is denoted by Dk(U). We will often use the
notation ⟨T, ω⟩ to emphasize the duality pairing with a form ω, but later we are going
to simply write the action of T as T (ω).

Definition 1.2.2. Given T ∈ Dk (U), we define the boundary of T as the (k−1)-current
defined as

⟨∂T, ω⟩ := ⟨T, dω⟩ for all ω ∈ Dk−1(U).

1.2.3. Remark. The functional ∂T is well-defined, linear and continuous. Note that ∂
on k-currents is just the adjoint operator of d on smooth, compactly supported k-forms.
The counterpart of the fact that d ◦ d = 0 is that ∂(∂T ) = 0 for all T ∈ Dk(U).

Definition 1.2.4. Given T ∈ Dk (U), we define the mass of T as

M(T ) := sup
{
⟨T, ω⟩|ω ∈ Dk (U) , ∥ω(x)∥∗≤ 1 ∀x ∈ U

}
,

where ∥ω(x)∥∗ is the comass norm6 of ω(x).

1.2.5. Remark. Definitions 1.2.1, 1.2.2 and 1.2.4 can be considered as generalized con-
cepts for the notions of manifold, boundary of a manifold and volume of a manifold
respectively. Indeed, let Σ be a smooth, oriented, k-dimensional submanifold in Rd. In
the spirit of Poincaré duality, we define the following linear functional TΣ(·) on Dk (U):

ω 7→
∫
Σ

ω.

6Some authors prefer to take the euclidean norm |·| instead; clearly the value of the mass changes
and in general M(T ) is strictly greater than the corresponding value replacing the comass norm with
|·|, but most of the theory remains consistent by equivalence of the norms.



12 1. Existence results

Such a current is often denoted by JΣK. Note that TΣ is uniquely determined by Σ in the
sense that Σ ̸= Σ′ (as oriented submanifolds) implies TΣ ̸= TΣ′ . We can rewrite Stokes’
theorem in the following way

∂TΣ = T∂Σ

and it is possible to prove that

Hk(Σ) = sup
{
TΣ(ω) |ω ∈ Dk (U) , ∥ω(x)∥∗≤ 1 ∀x ∈ U

}
,

justifying the terminology of “generalized surfaces”.

Since we are interested in a variational problem, as a dual space, Dk(U) is naturally
equipped with the weak∗-topology.

Definition 1.2.6. Given a sequence of k-currents (Tn)n and a k-current T , we say that
(Tn)n converges to T in the sense of currents if the sequence converges to T with respect
to the weak-* topology, that is

lim
n→∞

⟨Tn, ω⟩ = ⟨T, ω⟩ for all ω ∈ Dk (U) .

1.2.7. Remark. The boundary operator is continuous and the mass is a lower semicontin-
uous functional, both with respect to the weak∗-convergence of currents. More formally,
if (Tn)n is a sequence of k-currents converging to a k-currents T , then we have:

1. (∂Tn)n converges to ∂T in the sense of currents,

2. M(T ) ≤ lim infn→∞M(Tn).

As for distributions, we have a notion of support of a current.

Definition 1.2.8. The support of a k-current T in Dk(U), with U ⊂ Rd open, is the set

supp(T ) := Rd \
⋃{

V ⊂ U, V open : ω ∈ Dk(U), supp(ω) ⊂ V ⇒ T (ω) = 0
}
.

1.2.9. Remark. The notion of current is so general that it is possible to define for every
k = 1, 2, . . . , d a k-current T ∈ Dk(Rd) whose support is a singleton: calling them
k-dimensional objects does not encode the existence of a surrounding k-dimensional
geometry.

Important subclasses of currents need to be defined to obtain a reasonable geometric
object in the solution of the generalized Plateau’s problem.

Definition 1.2.10. We say that a k-current T has finite mass if M(T ) <∞.

1.2.11. Remark. Note that 0-currents with finite mass can be identified with signed
measures. The definition of current with finite mass is not trivial remarking the fact
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that the topology on Dk(Rd) in Definition 1.1.32 to which currents are dual is finer than
the topology induced by the norm

∥ω(x)∥∞:= sup
{
∥ω(x)∥∗: x ∈ Rd

}
.

The usual examples are derivatives of the Dirac delta at a point x0 ∈ U : pick the
0-current T on R such that, fixing x0 ∈ U ⊂ R

T (φ) = φ′(x0) for all φ ∈ C∞
c (U).

Given T ∈ Dk(Rd) with finite mass we obtain

|⟨T, ω⟩|≤ M(T )∥ω∥∞ ∀ω ∈ Dk(Rd).

Hence, T can be extended by density to a linear continuous functional defined on the
space of continuous and infinitesimal at infinity k-forms ω ∈ C0

(
Rd,Λk(Rd)

)
. By the

Riesz representation theorem7, T can be represented by integration with respect to a
measure with values in Λk(Rd)∗ = Λk(Rd). Thus, there exists a positive and finite
measure µ on Rd and a vector field τ : Rd → Λk(Rd) in L1(Rd, µ), unitary (in mass
norm) µ-a.e. such that

⟨T, ω⟩ =
∫
Rd

⟨ω(x), τ(x)⟩dµ(x) for all ω ∈ Dk(Rd). (1.2.1)

We denote by T = τ · µ a k-current whose action on a form is as in (1.2.1). We will
often call µ the total variation measure associated with T and denote it by ∥T∥. It can
be checked that M(T ) = µ(Rd), that is the mass of T equals the mass of the measure
∥T∥. In particular, if T ∈ Dk(U) and with finite mass, if A ⊂ U is any Borel set we can
define the restriction of T on A, denoted with T A, by

T A(ω) :=

∫
A

⟨ω(x), τ(x)⟩dµ(x).

Definition 1.2.12. A k-current T ∈ Dk(U) is called normal if both T and ∂T have
finite mass, that is

M(T ) <∞ and M(∂T ) <∞.

The space of normal k-currents is denoted by Nk(U).

Normal currents have good compactness properties:

Proposition 1.2.13. Let (Tn)n be a sequence of normal k-currents s.t.

sup
n

(M(Tn) +M(∂Tn)) <∞.

Then, up to subsequences, (Tn)n converges in the sense of currents to a k-current T .
Moreover, we have that

M(T ) ≤ lim inf
n→∞

M(Tn) and M(∂T ) ≤ lim inf
n→∞

M(∂Tn).

In particular, T is a normal k-current.

7We are actually invoking a slightly more general version than the one stated in Theorem 1.1.7.
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At this point one could formulate a very general version of the Plateau’s problem.

Plateau’s problem for normal currents. Given S ∈ Nk−1(U) such that S = ∂T
for some T ∈ Nk(U), does there exist T ′ ∈ Nk(U) such that ∂T ′ = S and M(T ′) is
minimized?

1.2.14. Remark. By Proposition 1.2.13 it is possible to employ the direct methods in the
calculus of variations: the functional M(·) is lower semicontinuous by 1.2.7 with respect
to convergence in the sense of currents and by sequential compactness in 1.2.13 we solve
the very general Plateau’s problem.

An interesting result for normal currents states that they cannot concentrate on small
closed sets; more precisely we have the following theorem:

Theorem 1.2.15. [61, Section 2.3, Theorem 2] Let T ∈ Nk(U) with U ⊂ Rd open. For
any I = (i1, . . . , ik) ∈ I(k, d) let πI denote the orthogonal projection

πI : (x1, . . . , xd) → (xi1 , . . . , xik) .

Then, for any closed set C ⊂ U such that Hk (πI(C)) = 0 for all I ∈ I(k, d), we have

∥T∥(C) = 0 that is T C = 0.

Nevertheless, the Plateau’s problem formulation for normal currents is still not sat-
isfactory since the space Nk(U) contains again elements that do not have the geometric
meaning of being k-dimensional (for any reasonable notion of dimension). Indeed we
can construct the following example.

Example 1.2.16. [38, Example 2.8] Consider the south and north poles S and N in
the sphere S2 ⊂ R3 and let Z be the 0-dimensional current JNK− JSK. For any meridian
γ joining S to N the corresponding current JγK is a minimizer of the mass among all
currents T with ∂T = Z and supp(T ) ⊂ S2. However the same holds if we parametrize
the meridians as a one-parameter family {γt}t∈S1 , where t is the intersection of γt with
the equator {x3 = 0} ∩ S2. If µ is a probability measure on S1, then the current

T1(ω) :=

∫
S1
⟨JγtK, ω⟩dµ(t)

is also mass-minimizing among all currents T with supp(T ) ⊂ S2 and ∂T = Z.

One could argue that Example 1.2.16 may be considered not so troublesome by
noticing that at least, among all minimizers, it is somehow possible to find “classical
minimizers”. In fact, deeper issues arise as the following theorem shows (see [104] for a
short proof):

Theorem 1.2.17 (Lavrentiev gap). For every smooth closed embedded curve γ in R4

define
M(γ) := inf {Area(Σ) : Σ is immersed, oriented and ∂Σ = γ} ,
m(γ) := min{M(T ) : ∂T = JγK}.

Then there are γ’s for which m(γ) < M(γ).

As a result, we need to add more structure to enclose some reasonable geometric
meaning in the notion of current.
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1.2.2 Existence for the generalized Plateau’s problem

To rule out minimizers as in Example 1.2.16 we need to add more structure to the
previous notions of currents. We will be mainly interested in what is known as integer
multiplicity rectifiable currents which can be thought as the natural extension of currents
of the type JΣK in which we allow Σ to be a rectifiable set and we also allow it to carry
an “integer multiplicity”.

Given a k-rectifiable set E in Rd, one can define an orientation of E as a Borel
function τE : E → Λk(Rd) such that τE(x) is a simple unit k-vector spanning TxE for
Hk-a.e. x ∈ E.

Definition 1.2.18. Let U be an open set in Rd. We call a k-current T rectifiable if T
admits the following representation

⟨T, ω⟩ =
∫
E

⟨ω(x), τE(x)⟩ θ(x)dHk(x),

where E is a k-rectifiable set, τE is an orientation of E, and θ is a real-valued function
θ ∈ L1(U,Hk E). The function θ is often called multiplicity of the current T . We will
often use the notation T = JE, τE, θK and the set of rectifiable k-currents in U is denoted
by Rk(U).

1.2.19. Remark. Given T = JE, τE, θK a k-rectifiable current, then E, τE, θ in the repre-
sentation of T are not uniquely determined: one could write equivalently JE,−τE,−θK
instead of JE, τE, θK. If we require in addition that θ > 0 for Hk-a.e. x ∈ E, then
E, τE,m are uniquely determined (up to Hk-null sets).

In particular we have that

M(T ) =

∫
E

|θ(x)|dHk(x) = ∥θ∥L1(U,Hk E). (1.2.2)

Definition 1.2.20. A rectifiable current T = JE, τE, θK whose multiplicity θ takes values
in Z is called an integer multiplicity rectifiable current. The set of integer multiplicity
rectifiable k-currents in U is denoted by Rk(U).

1.2.21. Remark. Any T ∈ R0(U) can be written as finite sum of weighted Dirac masses.
More formally, let xi ∈ Rd, θi ∈ Z and δxi

the Dirac mass at point xi for i = 1, . . . , N .
Then we can write

T =
N∑
i=1

θiδxi
.

Indeed, a function θ ∈ L1(U,H0 E) with values in Z is a function that attains a finite
number of values in a finite number of points, vanishing elsewhere.

1.2.22. Remark. Unlike the space of rectifiable currents, the set of integer multiplic-
ity rectifiable currents is not a real vector space since in general λT ∈ Rk(U) only if
T ∈ Rk(U) and λ is an integer. As a result, there is no hope to invoke any simple
functional-analytic principle to obtain good compactness properties in Rk(U). Still,
Rk(U) maintains the algebraic structure of abelian group with respect to the sum.
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Definition 1.2.23. If both T and ∂T are integer multiplicity rectifiable currents, then
T is called an integral current. The corresponding space is denoted by Ik(U).

The following theorem by Federer and Fleming can be considered as one of the
cornerstones in the theory of geometric variational problems, see [58].

It is worth pointing out that given a bounded sequence of integral currents (Tn)n,
the existence of a converging subsequence and a limit current T follows from Proposition
1.2.13. The fact that the limit current T is not just normal but integral deeply relies
on the geometry of integral currents: hence the name closure theorem, telling us that
bounded sets (with respect to the mass and the mass of the boundary) in the space
Ik(U) are (sequentially) weak∗-closed in Nk(U).

Theorem 1.2.24 (Closure theorem). Let (Tn)n be a sequence of integral k-currents in
U ⊂ Rd such that

supn (M(Tn) +M(∂Tn)) <∞.

Then there exist T ∈ Ik(U) and a subsequence (Tnj
)j such that Tnj

converges in the
sense of currents to T .

The closure theorem was initially proved for codimension one currents, i.e. (d− 1)-
dimensional currents in Rd by De Giorgi, see [33] and [34], in the language of sets of
finite perimeter few years before the appearence of Federer and Fleming foundational
article [58]. It is worth mentioning this since the ideas introduced by De Giorgi in [33]
and [34] still play an important role in the general case.

Federer and Fleming’s proof of closure theorem is based on a rectifiability argument
that goes under the name of structure theorem for sets of finite Hausdorff measure, the
proof of which is rather demanding. Several years later, two different proofs of the clo-
sure theorem were proposed by Solomon [98] and by Almgren [5], without employing the
machinery of the structure theorem: their proofs relied on various facts about multival-
ued functions, a tool that will be introduced in Chapter 2 and that still requires some
preliminary work. Moreover, another different proof of the closure theorem without the
structure theorem nor multivalued functions and that develops in the same spirit as De
Giorgi’s codimension 1 proof is due to White [105].

As a consequence of the closure theorem, it is important to state another fundamental
theorem, telling us that

Rk(U) ∩ Nk(U) = Ik(U).

Theorem 1.2.25 (Boundary rectifiability theorem). Let T be an integer multiplicity
rectifiable current with M(∂T ) <∞. Then T is an integral 8current.

As a corollary of Federer and Fleming closure theorem we can prove existence of a
solution of the generalized Plateau’s problem in the class of integral currents9; it will be
the main object of study in Chapter 2 to investigate how regular a solution is.

8Arguably the terminology comes from merging the two words integer and normal.
9It is fair to remark that in the case of hypersurfaces Hardt and Pitts solved the Plateau’s problem for

integral currents without employing the closure theorem, using instead basic facts about BV functions
in Rd and normal currents, see [64].
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Theorem 1.2.26 (Generalized Plateau’s solution). Given S ∈ Ik(Rd) with ∂S = 0,
there exists a (k + 1)-dimensional integral current T1 such that ∂T1 = S and M(T1) is
minimized among all integral currents T ∈ Ik+1(Rd) satisfying ∂T = S. We call such a
solution an area-minimizing integral current.

Proof. Let
m := inf{M(T ) |T ∈ Ik+1(Rd) : ∂T = S}

and let (Tn)n be a minimizing sequence. Note that m is finite, due to the cone construc-
tion, see [94, equation 26.26]. Since M(Tn) is bounded and M(∂Tn) is constant, we can
apply Theorem 1.2.24 to the sequence (Tn)n getting a subsequence converging in the
sense of currents to T1 ∈ Ik+1(Rd).

By Remark 1.2.7 we get

∂T1 = S and M(T1) ≤ m,

concluding the proof.

We end this subsection with the following important compactness theorem of area-
minimizing currents:

Theorem 1.2.27. [94, Theorem 34.5] Suppose (Tj)j is a sequence of area-minimizing
k-currents in U ⊂ Rd with respect to their own boundaries (∂Tj)j such that

sup
j

(M(Tj) +M(∂Tj)) <∞,

and suppose that Tj converges to T in the sense of currents for some T ∈ Dk(U). Then
T is area-minimizing in U .

Further topics on currents

As it always happens in mathematics, different constructions may lead to the definition
of the same object. This is the case, for instance, for the definition of Sobolev spaces,
that can be equivalently defined as a particularization of the abstract point of view of
the theory of distributions or by a completion procedure with respect to a suitable norm.
Analogous is the case for the theory of currents.

Definition 1.2.28. A k-dimensional polyhedral current (or k-polyhedral chain) is a
k-current P of the form

P :=
N∑
i=1

θiJσiK, (1.2.3)

where θi ∈ R \ {0}, σi are nontrivial k-dimensional simplexes in Rd with disjoint rel-
ative interiors and oriented by constant k-vectors τi such that JσiK = Jσi, τi, 1K is the
multiplicity-one rectifiable current naturally associated to the simplex σi. The vector
space of polyhedral k-currents with support in U ⊂ Rd is denoted by Pk(U). A polyhe-
dral current with integer coefficients θi is called integer polyhedral.
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We now introduce a very useful norm on the space of currents: the flat norm.

Definition 1.2.29. If T is a k-current then its flat norm is

F(T ) := inf {M(R) +M(S) : T = R + ∂S}

where R ∈ Dk(U) and S ∈ Dk+1(U).

1.2.30. Remark. It is immediate to see that the flat norm induces a coarser topology than
the one induced by the mass norm. It is important to recall that if (Tn)n is a sequence

of k-currents such that F(Tn − T ) → 0 for some T ∈ Dk(U), then T
∗
⇀ T . The converse

implication is also true, provided there exists K compact set such that supp(Tn) ⊂ K for
all n and Tn, T ∈ Nk(U) with a uniform bound supn(M(Tn)+M(∂Tn)) <∞. Hence, the
flat norm metrizes the dual topology of (normal, with uniform bound on their masses
and the ones of their boundaries) currents: this may be regarded as the analogous of
the classical fact that L1 convergence and distributional convergence are equivalent for
equibounded sequences of Sobolev W 1,1 functions.

Denote by int(K) the interior of the set K. The main motivation for introducing
polyhedral chains and the flat norm is the following theorem, the proof of which relies
on deeper machinery.

Theorem 1.2.31 (Polyhedral approximation). [57, 4.2.21] If T ∈ Ik(Rd), ε > 0, K ⊂
Rd is a compact set such that supp(T ) ⊂ intK, then there exists P ∈ Pk(Rd), with
supp(P ) ⊂ K, such that

FK(T − P ) < ε, M(P ) ≤ M(T ) + ε, M(∂P ) ≤ M(∂T ) + ε.

Moreover, P can be taken with integer coefficients.

It is useful to work with currents with support in a compact set. Let K be a compact
set such that K ⊂ U ⊂ Rd. It is customary to introduce the notations such as Dk(K)
for the class of k-currents with support in K, i.e.

Dk(K) := {T ∈ Dk(U) | supp(T ) ⊂ K}

and Dk,cpt(U) as the class of all such compactly supported currents, i.e.

Dk,cpt(U) := ∪{T ∈ Dk(K) |K ⊂ U,K compact}.

Analogously we do for all previously defined classes of currents and we will denote
by FK the flat norm of a current T ∈ Dk(K).

We briefly mention the notion of flat chains, which originated in the work of Whitney
[109].

Definition 1.2.32. Let U ⊂ Rd be an open set and let K ⊂ U be a compact set. The
class of integral flat chains supported in K is defined by

Fk(K) := {R + ∂S | R ∈ Rk(K), S ∈ Rk+1(K)} .
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Proposition 1.2.33. We have the following results:

1. Fk(K) is a complete metric space with respect to the metric induced by FK;

2. The set of k-integral currents with support in K is FK-dense in Fk(K)10.

Consequently Fk(K) can be regarded as the FK-completion of the space of integral
currents with compact supports in K. Moreover one can note that the mass M is lower
semicontinuous with respect to the FK-convergence in Fk(K). We define now the space
of (real) k-flat chain, denoted as Fk.

Definition 1.2.34. We say that T belongs to Fk(K) if there exists a sequence of normal
currents Tn ∈ Nk(K) such that FK (T − Tn) → 0. In other words we can write:

Fk(K) := Nk(K)
FK
.

1.2.35. Remark. Note that by 1.2.31 we get that:

Fk(K) = Nk(K)
FK

= Pk(K)
FK
.

In the spirit of operations that are usually done with manifolds, we conclude this
section defining some operations on currents that will be useful in the sequel.

Definition 1.2.36. If f : U ⊂ Rd → V ⊂ Rm is a smooth, proper11 map, then it
is possible to define the push-forward (or image) of a k-current T on U ⊂ Rd as the
k-current f∗T on Rm defined by

⟨f∗T, ω⟩ := ⟨T, f ∗ω⟩ ,

for any ω ∈ Dk (V ). Note that the boundary operator commutes with the push-forward
operation, that is ∂ (f∗T ) = f∗(∂T ) and that supp(f∗T ) ⊂ f(supp(T )).

In general there is no natural definition for the notion of intersection of two currents,
since even for the intersection theory for smooth manifolds some “safety” conditions are
required. However, it is possible to define the intersection of a normal k-current T and
a level set f−1(y) of a smooth map f : Rd → Rm (with k ≤ m ≤ d ) for almost every y,
resulting in a normal current Ty with the expected dimension m− k. This operation is
called slicing and to define it properly we need to recall two important results.

Theorem 1.2.37 (Sard theorem). Let f : Rd → Rm be of class Ck for some k ≥
max{d−m, 1}. Denote by

Cf :=
{
x ∈ Rd : rank(Df(x)) < m

}
the set of critical points of f . Then Lm(f(Cf )) = 0, that is the set of critical values of
f is of null Lm-measure.

10In fact, the same result holds more in general whenever the ambient space is a closed convex
subset C of a Banach space, working with the general theory of currents in metric spaces introduced
by Ambrosio and Kirchheim in [9], inspired by one of the last ideas by De Giorgi [37].

11We define a function f : X → Y between two topological spaces proper if the preimage of every
compact set in Y is compact in X.
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Corollary 1.2.38. Let 0 < m ≤ k ≤ d. Let M be a smooth k-surface in Rd and
f : Rd → Rm be smooth. Denote My := M ∩ f−1(y). Then for Lm-a.e. y, My is a
smooth surface of dimension k −m (or it is empty).

In order to extend Corollary 1.2.38 where M is replaced by a rectifiable set E and f
is Lipschitz we need to recall the following version of the coarea formula.

Theorem 1.2.39 (Coarea formula). Let E ⊂ Rd be k-rectifiable and f : Rd → Rm a
Lipschitz function. For y ∈ Rm, denote Ey := E ∩ f−1(y). For Hk-a.e. x ∈ E denote
Dτf(x) the tangential gradient of f at x and denote the tangential Jacobian as

Jτf(x) := |Dτf1(x) ∧ · · · ∧Dτfm(x)|

Then, for every Borel function g : E → [0,+∞], we have∫
Rm

(∫
Ey

g(x) dHk−m(x)

)
dLm(y) =

∫
E

g(x) Jτf(x) dHk(x). (1.2.4)

By Sard theorem and coarea formula we have the following proposition that allows
us to define the notion of slice of a rectifiable current :

Proposition 1.2.40 (Slicing of rectifiable currents). Let T = JE, τ, θK be a rectifiable
k-current in Rd, with M(T ) < ∞. Let f : Rd → Rm be a Lipschitz function, with
0 < m ≤ k ≤ d. Denote

Ẽ := {x ∈ E : Dτf(x) is defined and has rank m } .

For y ∈ Rm, denote Ey := E ∩ f−1(y). Then the following hold true:

1. Hk−m(Ey\Ẽ) = 0, for Lm-a.e. y;

2. Ey is (k −m)-rectifiable for Lm-a.e. y;

3. Denoting η(x) := Dτf1(x) ∧ · · · ∧Dτfm(x), we have that

TxE = TxEy ⊕ Span{η(x)},

for L m-a.e. y and for Hk−m-a.e. x ∈ Ey. Hence, for Lm-a.e. y, we can define
the orientation on Ey as the (k −m)-vector τ̃ such that

η(x)

|η(x)|
∧ τ̃(x) = τ(x), for Hk−m-a.e. y ∈ Ey.

Definition 1.2.41. Under the assumptions of Proposition 1.2.40, the (k−m)-rectifiable
current Ty := JEy, τ̃ , θ EyK is well-defined for Lm-a.e. y and it is defined as the slice of
T at y according to f . Sometimes the notation ⟨T, f, y⟩ is used to highlight f .
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By the coarea formula with g = |θ| we get:

Corollary 1.2.42. Under the assumptions of Proposition 1.2.40, let Ty := JEy, τ̃ , θ EyK.
Then ∫

Rm

M(Ty)dLm(y) =

∫
E

|θ(x)|Jτf(x)dHk(x) ≤ [Lip(f)]mM(T ).

Proposition 1.2.43. Let T ∈ Nk(Rd) and rectifiable. Let f : Rd → R be a Lipschitz
and C1 function. Let Ty be as in Definition 1.2.41, then for L1-a.e. y ∈ R we have:

Ty = ∂(T {f ≤ y})− ∂T {f ≤ y}.
As anticipated at the beginning and motivated by the above characterization for

codimension-one slices of rectifiable and normal currents, it is possible to define the slice
of a normal current as well.

Definition 1.2.44. Let T ∈ Nk(Rd) and f : Rd → R be a Lipschitz and C1 function.
For every y ∈ R we define the slice of a normal current as

Ty := ∂(T {f ≤ y})− (∂T ) {f ≤ y}.
It is a bit more complicated to deal with normal currents slices of codimensionm > 1.

Definition 1.2.45. Let T ∈ Nk(Rd) and f : Rd → Rm be a Lipschitz and C1 function.
Denote f1, . . . , fm the components of f . For every y ∈ Rm, y = (y1, . . . , ym) we define
recursively

Ty1 := ∂(T {f1 ≤ y1})− (∂T ) {f1 ≤ y1},
Ty1,y2 := ∂(Ty1 {f2 ≤ y2})− (∂Ty1) {f2 ≤ y2},

· · ·
⟨T, f, y⟩ = Ty := ∂(Ty1,...,ym−1 {fm ≤ ym})− (∂Ty1,...,ym−1) {fm ≤ ym}.

1.2.46. Remark. When m > 1 we have to ensure that after every iteration the slices are
still normal currents for Ty to be well-defined.

We conclude with two useful properties of slicing for normal currents and a corner-
stone theorem in the theory of currents proved by White in [108].

Proposition 1.2.47. Let T ∈ Nk(Rd) and f : Rd → R be a Lipschitz and C1 function.
Then for every y ∈ R we have

∂(Ty) = −(∂T )y

and ∫
R
M(Ty)dy ≤ Lip(f)M(T ).

Theorem 1.2.48 (Rectifiability of flat chains with finite mass). Let T ∈ Nk(Rd). For
every multi-index I = (i1, . . . , ik) ∈ I(k, d), we set

πI : (x1, . . . , xd) 7→ (xi1 , . . . , xik) ∈ Rk.

T is integer rectifiable if and only if, for every I, Lk-almost every slice Ty of T according
to πI is integer rectifiable.
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1.3 Optimal branched transport theory

Optimal transport aims to find the best way to carry a given source into a given target.
Such topic witnessed an impressive progression in the last thirty years, developing deep
connections with many fields of mathematics and serving as a model for many biological
and human-designed systems.

The classical Monge’s problem dates back in its original discrete formulation to 1781,
see [75], and can be stated in the following general modern form:

Monge’s Problem. Given two probability measures µ and ν, defined on the measurable
spaces X and Y , find a measurable map T : X → Y such that

T∗µ = ν,

i.e.
ν(A) = µ

(
T−1(A)

)
for all A ⊂ Y measurable,

and in such a way that T minimizes the transportation cost, that is∫
X

c(x, T (x))dµ(x) = min
S∗µ=ν

{∫
X

c(x, S(x))dµ(x)

}
,

where c : X × Y → R ∪ {+∞} is a given cost function.

A huge literature has been developed out of this problem, with many books and
surveys such as [102]. Nevertheless, two main objections may be raised to the Monge’s
problem. In primis, the model does not take into account the trajectories of the moving
particles, assuming implicitly that they are segments. In addition, the above formulation
of Monge’s problem does not take into account possible dynamic effects and interactions
among the moving particles, focussing only on the best coupling between initial points
and final distribution of mass. Nevertheless, from modeling purposes there may be
the need to look at the transport as a dynamic process, allowing for both nonlinear
trajectories and interactions among particles. Just to mention a few examples, systems
for which such features are relevant appear in nature, e.g. in roots systems of trees and
leaf nerves, the nervous, the bronchial and the cardiovascular systems, and in human-
designed structures like supply-demand distribution networks, irrigation networks and
electric power supply systems.

Mainly for these reasons, extensions of the Monge’s problem have been studied for
transportation systems that privilege group flows rather than spread-out processes, lead-
ing to optimal transport networks with peculiar ramified structures: this class of prob-
lems is nowadays known as optimal branched transport. In all of the many different
formulations of the problem, the main feature is the fact that the cost functional is
designed in order to privilege large flows and to prevent diffusion; indeed the transport
actually happens on a 1-dimensional network.

The aim of this section is to introduce both the discrete formulation of optimal
branched transport, dating back to an embryonal version due to Gilbert, see [62], and
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the variational formulations, which aim at transporting “diffuse” measures by means of a
ramified structure. There are two main formulations of the variational optimal branched
transport problem: the Eulerian formulation and the Lagrangian formulation, see [110]
and [71] respectively. The equivalence between both model formulations was shown in
[85].

We will introduce the Eulerian formulation which, from a geometric point of view,
can be described by means of the theory of currents, while we will only recall some basic
facts about the Lagrangian formulation. The Eulerian verison of the optimal branched
transport problem can be stated as a 1-dimensional Plateau-type problem in which one
aims to minimize a fractional power of the mass functional.

Eventually, we will describe the existence theory for the Eulerian formulation of the
optimal branched transport problem, proving the existence of solutions with finite costs.

1.3.1 The discrete model

The discrete model is the simplest possible model of optimal branched transport and it
takes its name from the fact the initial measure µ− and the target measure µ+ are finite
atomic, that is

µ− :=
k∑

i=1

aiδxi
and µ+ :=

l∑
j=1

bjδyj

with ai, bj ∈ R.

Definition 1.3.1. A transportation network from µ− to µ+ is a finite weighted oriented
graph G embedded in Rd, consisting of a set of vertices V (G), a set of oriented edges
E(G) and a weight function

w : E(G) → R

such that

1. {x1, x2, . . . , xk} ∪ {y1, y2, . . . , yl} ⊂ V (G).

2. For each initial vertex xi with i = 1, . . . , k,∑
e∈E(G) :xi=e−

w(e)−
∑

e∈E(G) :xi=e+

w(e) = ai,

where e− and e+ denote respectively the first and second endpoint of the oriented
edge e ∈ E(G).

3. For each target vertex yj with j = 1, . . . , l,∑
e∈E(G) : yj=e+

w(e)−
∑

e∈E(G) : yj=e−

w(e) = bj.
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4. For any vertex v ∈ V (G) \ {x1, x2, . . . , xk, y1, y2, . . . , yl}.∑
e∈E(G) : v=e+

w(e) =
∑

e∈E(G) : v=e−

w(e).

In other words, we say that (G,w) satisfies the “Kirchoff’s laws” at each of its
vertices.

We define now the energy that defines the cost of the transportation.

Definition 1.3.2. Fix α ∈ [0, 1), we define the α-energy of G as

Eα(G) :=
∑

e∈E(G)

|w(e)|α H1(e). (1.3.1)

We can now formulate what is known as the Gilbert’s problem:

Gilbert’s Problem. Fix α ∈ [0, 1) and µ−, µ+ finite atomic with the same total mass.
Find a transportation network G1 between µ− and µ+ such that

Eα(G1) ≤ Eα(G) (1.3.2)

among all transportation networks G between µ− and µ+. We call G1 an optimal trans-
portation network.

Figure 1.1: Representation of Definition 1.3.1

Minimizers of the Gilbert’s Problem turn out to satisfy some necessary topological
condition; to state it formally, we need to recall some basic definitions from graph theory.
We call a cycle a closed chain (e1, . . . , en) of consecutive12 distinct oriented edges. A
loop is a chain of consecutive distinct oriented edges which can be turned into a cycle
possibly switching the orientation of some edges. An oriented weighted graph is acyclic
if it does not contain any cycle and it is a tree if it does not contain any loop.

12Where consecutive means that ei+ = ei+1− for i = 1, . . . , n− 1.



1.3. Optimal branched transport theory 25

1.3.3. Remark. By definition it is immediate to check that a tree is an acyclic graph but
the converse is not true.

Proposition 1.3.4. [18, Lemma 2.6] Let (G,w) be an optimal transportation network.
Then G is a tree.

The main idea to prove Proposition 1.3.4 is to argue by contradiction: assume there
is a loop and build a competitor of the problem (i.e. another graph G′ satisfying the
Kirchhoff’s laws) such that Eα(G′) < Eα(G) by exploiting concavity of the function
x 7→ |x|α.

1.3.5. Remark. If we know the basic topological property that optimal transportation
networks need to be trees, then we get an a priori bound on the number of vertices
a solution can have. Hence, the problem is equivalent to a finite number of finite-
dimensional optimization problems, providing existence of a solution to the discrete
formulation of the optimal branched transport problem.

It is possible to show a rigidity property of the geometry of optimal transportation
networks: whenever three edges come together at a vertex, the angle they form must
satisfy some necessary conditions. More formally:

Proposition 1.3.6. [12, Lemma 12.1] Let x1, x2, y1 be three distinct points in Rd, µ− =
a1δx1 + a2δx2 and µ+ = b1δy1 with b1 = a1 + a2 and a1, a2 > 0. If x1, x2, y1 are aligned,
an optimal transportation network from µ− to µ+ is the minimal segment containing
x1, x2, y1. If x1, x2, y1 are not aligned, an optimal transportation network lies in the
triangle x1, x2, y1. In addition, it is a graph with two or three edges.

Proposition 1.3.7. [12, Lemma 12.2] Let (G,w) be an optimal transportation network
between µ− = a1δx1 + a2δx2 and µ+ = b1δy1 with b1 = a1 + a2 and a1, a2 > 0 and suppose
it has 3 edges. With the notation of Figure 1.2, then the vertex V must satisfy the
following angle conditions:

cos (θ1) =
k2α1 + 1− k2α2

2kα1
,

cos (θ2) =
k2α2 + 1− k2α1

2kα2
,

cos (θ1 + θ2) =
1− k2α2 − k2α1

2kα1 k
α
2

,

where k1 =
a1

a1+a2
, k2 =

a2
a1+a2

.

1.3.8. Remark. Once a1, a2 are fixed, the exponent α determines the aperture of the
angles made by the two joining edges. Moreover, if a1 = a2, then we have θ1 = θ2 =
arccos(22α−1 − 1)/2.
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Figure 1.2

1.3.2 The variational formulation

Now we turn to the Eulerian variational formulation of the optimal branched transport
problem. Our aim is to generalize the main objects of the discrete case to suit a con-
tinuous framework: we aim to transport an initial measure µ− to a target measure µ+,
where now µ− and µ+ are probability measures with compact support. Hence, we need
to generalize the notion of oriented weighted graph, the Kirchhoff’s laws contraint and
the α-energy of the graph: to do so we will employ the theory of 1-dimensional currents,
following Xia [110], see also [84].

Definition 1.3.9. Let K ⊂ Rd denote a convex compact set. If µ− and µ+ are elements
of M+(K) such that M(µ−) = M(µ+), we call a transport path a 1-dimensional normal
current T ∈ N1(K) with ∂T = µ+ − µ−. We denote by TP(b) the set of transport paths
with boundary b, that is

TP(b) := {T ∈ N1(K) : ∂T = b}.

1.3.10. Remark. Since 1-dimensional normal currents are in one-to-one correspondence
with vector-valued Radon measures with distributional divergence which is a measure,
then we can always think of a transport path T as a vector-valued measure such that
div(T ) = µ− − µ+. The condition ∂T = µ+ − µ− (or, equivalently, div(T ) = µ− − µ+)
is the generalization of the discrete model Kirchhoff’s laws.

1.3.11. Remark. We note that finite, oriented, weighted graphs can be identified with
1-polyhedral chains of the form (1.2.3) simply by taking θi = w(e) for every e ∈ E(G),
JσiK = JeiK and taking as orientations τi the one given by the tangent vectors to each
point x ∈ G ⊂ Rd.

By Remark 1.3.11, we can now define the cost functional for the variational formula-
tion of the optimal branched transport problem as the lower semicontinuous relaxation
of the α-energy Eα with respect to the flat norm. More formally:

Definition 1.3.12. Let Eα : P1(Rd) → [0,∞) be the α-energy defined as in (1.3.1),
having identified the graph G with the corresponding polyhedral 1-chain. For every
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T ∈ F1(Rd) we call the α-mass the functional Mα : F1(Rd) → [0,∞] defined as

Mα(T ) := inf

{
lim inf
j→∞

Eα(Gj) : Gj ∈ P1(Rd) with F (T −Gj) → 0

}
.

It turns out that the α-mass admits the following representation, see [31].

Proposition 1.3.13. Given α ∈ [0, 1) and a 1-current T ∈ N1(K) ∪ R1(K), we have
that

Mα(T ) =

{∫
E
|θ|αdH1, if T = JE, τ, θK ∈ R1(K);

+∞, otherwise.

1.3.14. Remark. It is very important to use the flat norm. Indeed if the lower semi-
continuous relaxation had been taken with respect to the convergence in the sense of
currents, then it would trivialize to the zero functional. To prove this, it sufficies to
consider the current JℓK associated to a line segment of length 1. It is easy to see that ℓ
can be approximated in the sense of currents by a sequence of currents (Tn)n, where each
Tn is made by n segments of length 1/n2 and multiplicity n. Note that Eα(Tn) = nα−1,
converging to 0 for n→ ∞ since α < 1.

1.3.15. Remark. The proof of Proposition 1.3.13 is relying mostly on three fundamental
ingredients in geometric measure theory: the slicing technique for rectifiable currents,
the so-called integralgeometric formula, see [69, Section 2.1.4] and White’s rectifiability
Theorem [108].

1.3.16. Remark. The α-mass Mα is a subadditive functional, namely

Mα(T1 + T2) ≤ Mα(T1) +Mα(T2) for every T1, T2 ∈ R1(Rd) ∪ N1(Rd).

Indeed, the inequality is trivial if T1 or T2 is not rectifiable. On the other hand, if
Ti = JEi, τi, θiK, i = 1, 2, the multiplicity θ of the rectifiable current T1 + T2 is obtained
as the sum of the multiplicities of T1 and T2 with possible signs, so that |θ|≤ |θ1|+|θ2|.
Hence we deduce that

Mα(T1+T2) ≤
∫
E1∪E2

|θ1+θ2|αdH1 ≤
∫
E1∪E2

|θ1|α+|θα2 |dH1 = Mα(T1)+Mα(T2). (1.3.3)

Definition 1.3.17. A current T with finite mass is called acyclic if there exists no
nontrivial current S such that

∂S = 0 and M(T ) = M(T − S) +M(S).

1.3.3 Existence for the optimal branched transport problem

We can now state the (Eulerian) optimal branched transportation problem with boundary
b = µ+ − µ−.
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Optimal Branched Transport Problem. Find a normal current T ∈ N1(K) which
minimizes the α-mass Mα among all normal 1-currents S with boundary ∂S = b.

Proof. Let (Tj)j ∈ TP(b) be a minimizing sequence for the α-mass. Then, by [74] for
each Tj there exists a polyhedral chain Gj such that

Mα(Gj) ≤ Mα(Tj), M(∂Gj) ≤ M(∂Tj) = M(b) and F(∂Tj − ∂Gj) ≤ 2−j.

One can replace the Gj’s with acyclic polyhedral chains G′
j enjoying the above prop-

erties, since this operation decreases the α-mass, see [18, Lemma 2.6]. Since, by the
Kirchhoff’s laws, the multiplicity θ of each G′

j is bounded by M(b) we have M(G′
j) ≤

CMα(Gj) ≤ CMα(Tj), getting a uniform bound. Hence by Proposition 1.2.13 and lower
semicontinuity of the α-mass we conclude the proof.

For notational purposes, we denote the least transport energy associated to b as

Eα(b) := inf{Mα(T ) : T ∈ TP(b)}.

We define the set of optimal transport paths with boundary b by

OTP(b) := {T ∈ TP(b) : Mα(T ) = Eα(b)}.

The first observation is that the existence of elements with finite α-mass in TP(b)
is not guaranteed in general. For example in [52] it is proved that if α ≤ 1 − 1/d then
there are boundaries b such that OTP(b) degenerates to the set of all currents T with
boundary ∂T = b, since there is no 1-current T with ∂T = b and Mα(T ) < ∞. On the
other hand, under the assumption α > 1− 1/d, then the existence of traffic paths with
finite α-mass is guaranteed and, moreover, there is also a quantitative upper bound on
the minimal transport energy.

Theorem 1.3.18 (Existence of transports with finite cost). Let K ⊂ Rd be a convex and
compact set with diameter L, α > 1− 1/d and µ−, µ+ ∈ M+(Rd) be two measures with
equal mass. Then there exists a normal 1-current T ∈ N1(K) such that ∂T = µ+ − µ−
and

Mα(T ) ≤ Cα,d L ∥µ+∥α,

where Cα,d is a geometric constant depending only on the exponent α and the dimension
d.

1.3.19. Remark. We aim to transport µ− to µ+ and without loss of generality we assume
µ− := δ0, since if we can transport δ0 to µ+ with finite α-massMα, then we can start from
an arbitrary measure µ− and transport it to δ0 again with finite Mα(T ). Concatenating
the two transports we get that the sum of the two traffic paths will have cancellation of
the boundary δ0 and, by (1.3.3), the α-mass Mα of the sum of the two traffic paths will
still have finite cost.
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Proof. Assume without loss of generality that K := [0, 1]d, µ− := δ0 and µ+ is a proba-
bility measure. Consider a dyadic decomposition of K and up to a translation we may
assume that µ+(∂Q) = 0 for any dyadic cube Q of any generation, see [29, Lemma 3.1].

For every n let

µn
+ :=

2nd∑
i=1

a
(n)
i δ

x
(n)
i
,

where a
(n)
i := µ+(Q

(n)
i ) with Q

(n)
i dyadic cubes of n-th generation and x

(n)
i representing

the center of each Q
(n)
i .

Let Pn be the polyhedral chain transporting µn−1
+ onto µn

+ by connecting each x
(n−1)
i

to the centers {x(n)j }2dj=1 of the dyadic cubes of the n-th generation contained in Q
(n−1)
i ,

see Figure 1.3.
We have

M(Pn) =
2nd∑
j=1

cd 2
−n a

(n)
j = cd 2

−n, (1.3.4)

where cd is a constant depending only on the dimension d. The last passage follows from

the fact
∑2nd

j=1 a
(n)
j = 1 since µn

+ is a probability measure. Moreover, we can write

Eα(Pn) =
2nd∑
j=1

cd 2
−n (a

(n)
j )α = cd 2

−n2nd
(
2−nd

2nd∑
j=1

(a
(n)
j )α

)

≤ cd 2
n(d−1)

(
2−nd

2nd∑
j=1

a
(n)
j︸ ︷︷ ︸

=1

)α
= cd 2

n(d−1−dα),
(1.3.5)

where d − 1 − dα < 0 since by assumption α > 1 − 1/d. By (1.3.4) we have that
Tm :=

∑m
n=1 Pn is a Cauchy sequence in mass and, a fortiori, with respect to the flat

norm. Hence, there exists a flat chain T such that Tm
F→ T and M(T ) is finite13.

Moreover, we get µm
+ − µ− = ∂Tm and, by continuity of the boundary operator

∂Tm
F→ ∂T.

Since µm
+

F→ µ+, we conclude that

∂T = µ+ − µ−.

Finally, we show Mα(T ) < ∞. By (1.3.5), Definition 1.3.12 and subadditivity of Eα

we conclude:

13Since the masses of the partial sums were equibounded and M is lower semicontinuous with respect
to the F-convergence.
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Mα(T ) ≤ lim inf
m→∞

(Eα(Tm)) ≤ lim
m→∞

(
m∑

n=1

Eα(Pn)

)
≤ Cα,d.

1.3.20. Remark. The constant Cα,d tends to ∞ when α → (1 − 1/d). Clearly, if α ≤
1− 1/d then the series in (1.3.5) diverges, but this would not tell us that the threshold
α > 1 − 1/d is sharp. Nevertheless, it turns out that α > 1 − 1/d is indeed a sharp
bound for the existene of a transport path with finite cost and the ideas used to prove
it are not far from the above argument; we refer to [52] for a detailed discussion.

Figure 1.3

Useful properties

We collect some results in optimal branched transport theory that will be useful in the
sequel.

We now introduce some language from the Lagrangian formulation of the optimal
branched transport problem. In this formulation, see [71], transport paths are modeled
as probability measures on the space of Lipschitz curves, where each curve represents
the trajectory of a single particle. The Eulerian and the Lagrangian formulations have
been proved to be equivalent (see [85]) and, in particular, the link between these two
formulations of the optimal branched transport problem is encoded in a deep result due
to Smirnov on the structure of acyclic normal 1-currents, see [97].

Definition 1.3.21. We denote by Lip the space of 1-Lipschitz curves γ : [0,∞) → Rd.
For γ ∈ Lip we denote by T0(γ) the value

T0(γ) := sup{t : γ is constant on [0, t]}
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and by T∞(γ) the (possibly infinite) value

T∞(γ) := inf{t : γ is constant on [t,∞)}.

Given a Lipschitz curve with finite length γ : [0,∞) → Rd, we denote

γ(∞) := lim
t→∞

γ(t).

Definition 1.3.22. We say that a curve γ ∈ Lip of finite length is simple if γ(s) ̸= γ(t)
for every T0(γ) ≤ s < t ≤ T∞(γ) such that γ is nonconstant in the interval [s, t].

To a Lipschitz simple curve with finite length γ : [0,∞) → Rd, we associate canoni-
cally the following rectifiable 1-current

Rγ :=

s
Im(γ),

γ′

|γ′|
, 1

{
.

1.3.23. Remark. It follows from (1.2.2) that M (Rγ) = H1(Im(γ)) and it is immediate
to check that ∂Rγ = δγ(∞) − δγ(0). Since γ is simple, if it is also nonconstant, then
γ(∞) ̸= γ(0) and M (∂Rγ) = 2.

Definition 1.3.24. Let I be a finite measure space and, for each λ ∈ I, let Tλ be a
1-current such that

(a) the function λ 7→ ⟨Tλ, ω⟩ is measurable for every ω ∈ D1(Rd),

(b)
∫
I
M(Tλ) dλ <∞.

Then we denote by T :=
∫
I
Tλ dλ the 1-current defined by

⟨T, ω⟩ =
∫
I

⟨Tλ, ω⟩ dλ for every ω ∈ D1(Rd).

1.3.25. Remark. Note that assumption (a) and the definition of mass imply that the
function λ 7→ M(Tλ) is measurable, thus the integral in assumption (b) is well-defined.

Definition 1.3.26. Let T ∈ N1(Rd) and let π ∈ M+(Lip) be a finite positive measure
supported on the set of curves with finite length such that

T =

∫
Lip

Rγ dπ(γ), (1.3.6)

in the sense of Definition 1.3.24. We say that π is a good decomposition of T if π is
supported on nonconstant, simple curves and satisfies the equalities

M(T ) =

∫
Lip

M(Rγ)dπ(γ),

M(∂T ) =

∫
Lip

M(∂Rγ)dπ(γ) = 2π(Lip).
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We recall a fundamental result by Smirnov [97], which establishes that every acyclic
normal 1-current can be written as a weighted average of simple Lipschitz curves, i.e. it
admits a good decomposition.

Theorem 1.3.27. Let T ∈ N1(Rd) be an acyclic normal 1-current. Then there is a
Borel finite measure π on Lip such that T can be decomposed as

T =

∫
Lip

Rγ dπ(γ)

and π is a good decomposition of T .

Proposition 1.3.28. [84, Theorem 10.1] Let µ−, µ+ ∈ M+(Rd) and T ∈ OTP(µ+−µ−)
with finite α-mass. Then T is acyclic.

1.3.29. Remark. By Proposition 1.3.28 any optimal transport path admits a good de-
composition.

We recall some useful properties of good decompositions and we refer to [27] for a
proof.

Proposition 1.3.30. If T ∈ N1(Rd) has a good decomposition π, the following state-
ments hold:

1. The positive and the negative parts of the signed measure ∂T are

∂−T =

∫
Lip

δγ(0) dπ(γ) and ∂+T =

∫
Lip

δγ(∞) dπ(γ). (1.3.7)

2. If T = JE, τ, θK is rectifiable, then

|θ(x)|= π ({γ : x ∈ Im(γ)}) for H1-a.e. x ∈ E. (1.3.8)

3. For every π′ such that π′(A) ≤ π(A) for every Borel set A, the representation

T ′ :=

∫
Lip

Rγ dπ
′(γ) (1.3.9)

is a good decomposition of T ′. Moreover, if T = JE, τ, θK is rectifiable, then T ′ can
be written as T ′ = JE, θ′, τK with θ′ ≤ min {θ, π′(Lip)}.

Proposition 1.3.31. [12, Proposition 7.4] Let α ∈ [0, 1) and T ∈ OTP(b) such that
Mα(T ) <∞. Then T satisfies the single path property, namely for every x, y ∈ supp(T )
π-a.e. γ passing through x, y follows the same trajectory in between (with the same
orientation).

1.3.32. Remark. Proposition 1.3.31 is a necessary condition in the same spirit of the tree
property of discrete graphs as in Proposition 1.3.4.
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We now state one of the most important well-posedness properties in the theory of
optimal branched transport, establishing that optima are stable with respect to varia-
tions of the initial and final distributions of mass. In its full generality, the validity of
such property was still an open problem in the field since few years ago, see [29].

Theorem 1.3.33 (Stability of minimizers). Let α ∈ (0, 1), µ− and µ+ be mutually
singular positive measures on Br(0) for some r > 0, satisfying µ−(Rd) = µ+(Rd). Let
(µn

−)n∈N, (µ
n
+)n∈N be two sequences of positive measures on Br(0) such that for every

n ∈ N we have µn
−(Rd) = µn

+(Rd) and

µn
±

∗
⇀ µ±.

Assume there exist Tn optimal transport paths with boundaries bn = µn
+ − µn

− satisfying

sup
n∈N

Mα(Tn) <∞.

Then, the (nonempty) family of subsequential weak∗-limits of Tn is contained in OTP(b),
where b = µ+ − µ−.

Finally we mention a slight improvement of Theorem 1.3.33, relaxing the assumption
requiring µ− and µ+ to be mutually singular, pointing out that it is actually irrelevant
in the proof given in [29]. More precisely, we prove the following result which will be
important in the sequel.

Definition 1.3.34. We denote the set of boundaries by

B0(K) := {b ∈ D0(K) : there is an S ∈ D1(K) with ∂S = b} .

Fix an arbitrary constant C > 0 and define

AC := {b ∈ B0(K) : M(b) ≤ C and Mα(T ) ≤ C for every T ∈ OTP(b)}. (1.3.10)

We metrize AC with the flat norm FK and we observe that the set AC endowed with
the induced distance is a nontrivial complete metric space.

Theorem 1.3.35. Let bn ∈ AC and let Sn ∈ OTP(bn). For every subsequential limit T
of Sn we have T ∈ OTP(∂T ).

Proof. The subsequential convergence F(Sn − T ) → 0 implies F(bn − ∂T ) → 0 and
writing bn = µn

+ − µn
− (being µn

+ and µn
− respectively the positive and the negative part

of the signed measure bn) and µ± := limn→∞ µn
±, we have ∂T = µ+ − µ−, where µ+ and

µ− are not necessarily mutually singular.
Hence, with respect to [29, Theorem 1.1] we simply need to remove the assumption

that µ− and µ+ are mutually singular. In fact we observe that such assumption does
not have a fundamental role in the proof already given in [29] and, more precisely, we
analyze all the points where such assumption is relevant.
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• In [29, equation (4.9)] the assumption is used, but we observe that if we do not as-
sume that µ− and µ+ are mutually singular, [29, equation (4.9)] would be replaced
by

∂T ij =

∫
Lip(Qi,Qj)

δγ(∞) − δγ(0) dP (γ),

which suffices to obtain [29, equation (4.23)], which is the only point where [29,
equation (4.9)] is (implicitly) used.

• In [29, page 852, line 7], the fact that µ− and µ+ are mutually singular is actually
not necessary.

• The fact that µ− and µ+ are mutually singular is necessary to obtain [29, equations
(4.16), (4.17)] and more precisely without such assumption the validity of those
equations might fail in the cubes {Qh : h = 1, . . . , N} but it remains true (with the
same argument) in the remaining cubes Qi ∈ Λ(Q, k). However, we observe that
[29, equations (4.16), (4.17)] are only used to obtain [29, equation (4.18)], which
remains valid, precisely because it is stated only for the cubes Qi ∈ Λ(Q, k)\{Qh :
h = 1, . . . , N}.

In conclusion, with the minor modifications listed above, the proof of [29, Theorem 1.1]
remains valid even without the assumption that µ− and µ+ are mutually singular, thus
concluding our proof.



Chapter 2

Regularity results

The main goal of Chapter 2 is to present the regularity theory for area-minimizing inte-
gral currents and for optimal transport paths. Indeed, once we have established under
which conditions the Plateau’s problem and the optimal branched transport problem
admit a solution, the natural following question is how regular this solution actually is.

In Section 2.1 we will investigate the interior regularity theory for area-minimizing in-
tegral currents. Following the analogy with Sobolev functions that minimize the Dirichlet
energy, one could hope that area-minimizing integral currents are, a posteriori, “every-
where regular” manifolds. It turns out that this is not the case since area-minimizing
surfaces are substantially more complicated geometric objects than functions, allowing
for the presence of singularities; this fact makes the study of the regularity of area-
minimizing integral currents one of the most difficult and exciting topics in the field of
geometric variational problems. We will investigate the interior regularity theory, but it
is very important to mention that boundary regularity for area-minimizing integral cur-
rents is a well-studied and live topic of research as well, witnessing major developments
in the last years, see [39] and full of widely open conjectures. Our main references for
Section 2.1.1 and Section 2.1.2 are [38, 42].

Finally, in Section 2.2, we will present the main results in the regularity theory for
optimal transport paths, pointing out that one of the main ingredients in the present
theory, which is mostly due to Xia [111], can be reread as a consequence of the recent
stability result, see Theorem 1.3.33 or [29].

2.1 Regularity theory for area-minimizing currents

Let us assume that T is an area-minimizing integral m-current in Rd. Let n := d −m
be the codimension of T . Let Br(p) ⊂ Rn+m denote the ball of radius r centered at p.
We say that p ∈ supp(T ) \ supp(∂T ) is an interior regular point if there is a positive
radius r > 0, a smooth embedded submanifold Σ ⊂ Rn+m and a positive integer Q
such that T Br(p) = QJΣK. The set of interior regular points, which is relatively open
in supp(T ) \ supp(∂T ), is denoted by Reg(T ). Its complement supp(T ) \ (supp(∂T ) ∪
Reg(T )) is denoted by Sing(T ) and is called the interior singular set of T .

35
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The problem is to understand whether Sing(T ) is empty and, in case it is not, to
estimate how “large” it can be in terms of reasonable notions of dimension, like the
Hausdorff dimension. Surprisingly, the answer strongly depends on the codimension
n. Indeed, if n = 1, Sing(T ) of an area-minimizing integral current T has Hausdorff
dimension at mostm−7 or, in other words, area-minimizing integral currents are smooth
(and also real analytic) submanifolds exept for a closed set of Hausdorff dimension at
most m−7. On the other hand, if n ≥ 2, solutions to the generalized Plateau’s problem
exhibit singularities already in dimensionm = 2. Indeed, in higher codimension, Sing(T )
of an area-minimizing integralm-current T has Hausdorff dimension at mostm−2. More
formally, we can state the following theorems.

Theorem 2.1.1 (Regularity in codimension n = 1). Let Ω ⊂ Rm+1 an open set and let
T an area-minimizing m-dimensional integer rectifiable current in Ω. Then

i) for m ≤ 6, Sing(T ) ∩ Ω is empty (see [35, 36, 60] for m = 2, [3] for m = 3, [96]
for 4 ≤ m ≤ 6),

ii) for m = 7, Sing(T ) ∩ Ω consists of isolated points (see [56]),

iii) for m ≥ 8, Sing(T ) ∩ Ω has Hausdorff dimension not larger than m−7 (see [56]),
it is (m− 7)-rectifiable and of locally finite Hm−7-measure (see [95, 82]),

iv) the above results are optimal: for every m ≥ 7 there are area-minimizing integral
currents T in Rm+1 for which Sing(T ) has positive Hm−7-measure (see [15]).

Theorem 2.1.2 (Regularity in codimension n ≥ 2). Let Ω ⊂ Rm+n an open set and
let T an area-minimizing m-dimensional integer rectifiable current in Ω. Suppose that
n ≥ 2, then

i) for m = 1, Sing(T ) ∩ Ω is empty,

ii) for m = 2, Sing(T ) ∩ Ω consists of isolated points (see [26, 48, 47, 49]),

iii) for m ≥ 3, Sing(T ) ∩ Ω has Hausdorff dimension not larger than m − 2 (see [4,
6, 42, 44, 43, 45, 46]),

iv) the above results are optimal: for every m ≥ 2 there are area-minimizing integral
currents T in Rm+n for which Sing(T ) has positive Hm−2-measure (see [55]).

Not only are the theorems different in terms of results, but also they differ in terms of
level of difficulty and techniques involved in the proofs. Even though regularity theory in
codimension 1 can be considered as a delicate topic, it is by now well-studied and fairly
understood both in terms of results and employed techniques. On the other hand, the
presence in higher codimension of what are known as branching singularities required
the development of a full new theory and more sophisticated machinery that was initially
contained in a 1728-page long typewritten monograph by Frederick J. Almgren [4]. As
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mentioned, Theorems 2.1.1 and 2.1.2 are sharp as shown by the following two celebrated
examples: if n = 1 cosider what is called Simons’ cone in R8:

S =
{
x ∈ R8 : x21 + x22 + x23 + x24 = x25 + x26 + x27 + x28

}
,

which clearly has a singularity in the origin. Much more complicated was instead to
show that S was (locally) area-minimizing in R8, which was proved by Bombieri, De
Giorgi and Giusti, see [15].

If n ≥ 2, then it is easier to show that Theorem 2.1.2 is optimal. Consider the
following holomorphic curve

Γ = {(z, w) ∈ C2 ≃ R4 : z2 = w3}.

One can see that the origin is a singular point for Γ. Moreover, once the so-called
Wirtinger’s inequality, see [57, 1.8.2] has been established, it is fairly easy to prove that
Γ is area-minimizing. To do so, we introduce some basic facts about complex geometry.

Recall that holomorphic subvarieties of Cn, namely zeros of holomorphic maps u :
Cn → Cn−k (with k and n − k the complex dimension and codimension of the variety
respectively) can be given a natural orientation. We identify Cn with R2n as usual: if
z1, . . . , zn are complex coordinates and xj = Re zj, yj = Im zj, we let x1, y1, . . . , xn, yn be
the standard coordinates of R2n. We remind that a holomorphic subvariety Γ of Cn of
complex dimension k is an oriented real analytic submanifold of R2n \ Sing(Γ) of (real)
dimension m = 2k, where Sing(Γ) is a holomorphic subvariety of complex dimension
k − 1. At each point p ∈ Γ \ Sing(Γ), the (real) tangent 2k-dimensional plane TpΓ can
be identified with a complex k-dimensional plane of Cn. If v1, . . . , vk is a complex basis
of TpΓ , we can then define a canonical orientation for TpΓ using the simple 2k-vector
Re v1 ∧ Im v1 ∧ . . . ∧ Re vk ∧ Im vk. From this, we can now define the current JΓK by
integrating forms over the oriented submanifold Γ \ Sing(Γ). We refer to [68] for an
extended discussion about Kälher manifolds and complex geometry.

The discussion can be localized to holomorphic subvarieties in open subsets Ω of Cn

and note that, if Ω′ is a bounded open subset of the domain Ω where Γ is defined, then
JΓK has finite mass in Ω′ and it is thus an integer rectifiable current.

Proposition 2.1.3 (Wirtinger’s inequality). Let Σ be a Kälher manifold1 with Kälher
form ω and denote v a unitary simple 2k-vector. Then

⟨ω ∧ · · · ∧ ω︸ ︷︷ ︸
k times

, v⟩ ≤ k!

2.1.4. Remark. In other words, Wirtinger’s inequality tells that the k-th exterior power of
the Kälher form ω is bounded above by k!, when evaluated on unitary simple 2k-vectors.
Equality holds if and only if the 2k-plane spanned by v is a complex k-plane.

1Recall a Kähler manifold is a symplectic manifold equipped with a compatible integrable almost-
complex structure.
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Theorem 2.1.5. Any compact portion of a holomorphic subvariety in Cn is area-
minimizing.

Proof. On Cn ≃ R2n consider the Kähler form

ω := dx1 ∧ dy1 + · · ·+ dxn ∧ dyn.

Note that dω = 0 and, by Wirtinger’s inequality 2.1.3, the 2k-form

φ :=
1

k!
ωk

satisfies ∥φ(v)∥∞≤ 1 for all 2k-planes2 identified by v, with equality if and only if the 2k-
plane is a complex k-plane. Let Σ be a compact portion of a k-dimensional holomorphic
variety and let Γ be any other submanifold such that ∂Σ = ∂Γ. By the Poincaré lemma
in R2n we have that ω is exact. Indeed we can even write explicitly

ω = d(x1dy1 ∧ ... ∧ xndyn) =: dη.

By applying twice Stokes’s theorem (Theorem 1.1.30) we get

M(JΣK) =
∫
Σ

1 =

∫
Σ

ω =

∫
∂Σ

η =

∫
∂Γ

η =

∫
Γ

ω ≤ M(JΓK). (2.1.1)

2.1.6. Remark. As a corollary we get that the holomorphic curve

Γ = {(z, w) ∈ C2 ≃ R4 : z2 = w3}

is a (locally) area-minimizing current of dimension 2 in R4, showing that Theorem 2.1.2
is sharp. We will comment more later on the “branch point” singularity that appears
at the origin. We remark that it has been rather simple to provide examples of area-
minimizing integral currents with singularities in higher codimension: this should be the
first warning about the degree of difficulty of developing a full regularity theory in that
setting.

Before turning to the analysis of codimension 1 theory, we recall a fundamental
formula that plays a crucial role in (almost) any regularity theory for “weak objects”:
the so-called monotonicity formula.

Let T be an area-minimizing m-current in Rm+n and suppose T represents (by in-
tegration) a smooth surface Σ (that is T = JΣK). Fix a point p ∈ Σ \ ∂Σ and a radius
r < dist(p, ∂Σ). Assume further that ∂Br(p) intersects Σ transversally. If we replace Σ
in the ball Br(p) with the cone having vertex p and boundary Σ ∩ ∂Br(p) we increase
the volume of Σ. More formally:

Hm(Σ ∩Br(p)) ≤
r

m
Hm−1(Σ ∩ ∂Br(p)).

2We say that ω is a calibration, that is a closed m-form such that ∥ω∥∞≤ 1.
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On the other hand coarea formula (Theorem 1.2.39) implies that

Hm−1(Σ ∩ ∂Br(p)) ≤
d

dt

∣∣∣
t=r

Hm(Bt(p) ∩ Σ)

and solving the resulting differential inequality we can conclude that

d

dr

Hm(Σ ∩Br(p))

rm
≥ 0.

A more careful computation, exploiting the stationarity of Σ, provides the following
much more precise formula:

Hm(Σ ∩Br(p))

rm
− Hm(Σ ∩Bs(p))

sm
=

∫
Σ∩(Br(p)\Bs(p))

∣∣(x− p)⊥
∣∣2

|x− p|m+2
dHm(x), (2.1.2)

for 0 < s < r, where (x − p)⊥ denotes the component of the vector (x − p) which
is orthogonal to the tangent space TxΣ. The formula in (2.1.2) is still valid for area-
minimizing integer rectifiable currents as well. Indeed, note that the right-hand side
of (2.1.2) is well-defined for T (replacing Hm with ∥T∥) since at ∥T∥-a.e. x we have a
well-defined tangent plane, allowing us to define (x− p)⊥ for ∥T∥-a.e. x.

Recall the following Proposition:

Proposition 2.1.7. If T is an integer rectifiable current, then the number

Θ(T, p) := lim
r→0

∥T∥(Br(p))

ωmrm

exists and it is a positive integer for ∥T∥-a.e. point p.

Given a current T we will denote by Tp,r the blow-up of T , that is the result of
translating T so that p becomes the origin and enlarging it of a factor r−1. More
formally:

Definition 2.1.8. Let ιp,r denote the map x 7→ (x−p)/r, then we define Tp,r := (ιp,r)∗ T .
Note that when T = JΣK for some smooth surface Σ then Tp,r = Jιp,r(Σ)K.

We recall now a very important definition.

Definition 2.1.9. An area minimizing cone of dimension m is an integer rectifiable
m-current S such that ∂S = 0 and S0,r = S for every positive r and S Ω is area-
minimizing for any bounded open set Ω. In addition, if T and S are two currents such
that, for some p ∈ supp(T ) and some rk → 0, Tp,rk converges to S, we say that S is
tangent to T at p.

The monotonicity formula has several important consequences that we recall here.

Proposition 2.1.10. Let T ∈ Im(Rm+n) be area-minimizing. Then
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i) The density Θ(T, p) is well-defined at every p /∈ supp(∂T ), it is at least 1 at each
point p ∈ supp(T ) \ supp(∂T ) and it is upper semicontinuous.

ii) For every p /∈ supp(∂T ) and every sequence rk → 0 there is a subsequence, not
relabeled, and an area-minimizing cone T0 such that Tp,rk → T0. Moreover, T0 ̸= 0
if and only if p ∈ supp(T ).

Note that if T ∈ Rm(Rm+n) then, by Remark 1.1.12, ∥T∥-a.e. p ∈ supp(T )\supp(∂T )
there is a unique tangent cone, which is an integer multiple (where the multiple is
Θ(T, p)) of an m-dimensional plane π(p). This motivates the following definition.

Definition 2.1.11. A tangent cone S is called flat if it is a (nonzero integer) multiple
of an m-dimensional plane.

Note that at every p ∈ Reg(T ) there is a unique tangent cone and it is flat so that,
equivalently, if there is a single tangent cone at p which is not flat, then p ∈ Sing(T ).
Hence, one should be tempted to guess that a possible characterization of a regular point
is a point where at least one tangent cone is flat: this is true in the very particular case
of codimension 1, but not necessarily in higher codimension as the holomorphic curve

Γ =
{
(z, w) ∈ C2 : z2 = w3

}
already shows.

We conclude this part by mentioning what can be considered the most challenging
open problem in the regularity theory of generalized area-minimizing surfaces.

Open problem 1. It is not known whether the tangent cone to an area-minimizing
current T is unique at every point p ∈ supp(T ) \ supp(∂T ).

2.1.12. Remark. Proposition 2.1.10 does not imply equality for the subsequential limits.
Some partial results are known, such as for 2-dimensional currents in any codimension
by White [103] and in codimension 1 at any isolated singularity by Simon [93]. More
refined analyses of the structure of the singular set have been developed relying on the
uniqueness of tangent cones for 2-dimensional currents, as an example see [48, 47, 49].
The remaining cases are widely open.

2.1.1 Area-minimizing currents in codimension one

In this section we aim to highlight the main ideas behind the proof of what is known in the
literature as the De Giorgi-Allard ε-regularity theorem. Indeed, the first breakthrough
in regularity theory for generalized area-minimizing surfaces is due to De Giorgi, see
[35], by means of finite perimeter sets (or Caccioppoli sets); in his pioneering work he
realizes that the existence of a flat tangent plane at a point p is enough to conclude that
p is a regular point in codimension 1. In the framework of generalized area-minimizing
surfaces, the most important generalization of De Giorgi’s ε-regularity theorem is due to
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Allard in [1] using the concept of integer rectifiable varifolds with sufficiently integrable
“generalized mean curavature”.

We will start stating the De Giorgi-Allard ε-regularity theorem in all dimensions and
codimensions, emphasizing why it is valid in codimension 1 only. Then, for the sake of
the exposition, we will prove a simplified version of the De Giorgi-Allard ε-regularity
theorem in the language of Federer and Fleming’s theory of currents. We will not prove it
in full generality, but we will start from the very strong assumption that the (support of
the) area-minimizing currents is already a graph of a Lipschitz function; nevertheless, we
consider more useful to avoid the technical part of the approximation of area-minimizing
currents by means of Lipschitz graphs with the scope of highlighting the main ideas of
an ε-regularity theorem such as the excess decay and the harmonic approximation.

2.1.13. Remark. When we say ε-regularity theorem what we mean is a statemant the
following type:

“If some suitable quantity, usually an integral quantity, is sufficiently small at a given
scale, then we can conclude that our object is regular at a smaller scale”.

Hence, when we have an ε-regularity theorem the main question to ask is under which
assumptions this suitable integral quantity is small enough.

The main quantity which turns out to be fundamental in the codimension one theory
is the excess of the current T , which we now define. We introduce the following notations:
let (p + π) be the affine plane passing through p, π⊥ the orthogonal complement of π
and we denote Br(p, π) := Br(p) ∩ (p+ π).

Definition 2.1.14. Given a smooth m-dimensional submanifold Σ ⊂ Rn+m and π an
m-plane, we call the excess of the submanifold Σ at point p in the ball Br(p) of radius
r with respect to π the quantity

E(Σ, p, r, π) :=
1

rm

∫
Σ∩Br(p)

∥TxΣ− π∥2dHm(x), (2.1.3)

where we identify an m-plane π with the orthogonal projection onto it, which is a linear
map π : Rn+m → Rn+m and we use the Hilbert-Schmidt norm for linear maps3. The
excess of the submanifold Σ at point p in the ball Br(p) of radius r is

E(Σ, p, r) := min {E(Σ, p, r, π) | π is an oriented m-plane}. (2.1.4)

2.1.15. Remark. Note that E is scale-invariant, i.e. invariant under dilations, thanks to
the presence of the factor r−m. Informally, E is an integral measure of the oscillation of
the tangent plane to the submanifold.

3It is important to choose the Hilbert-Schmidt norm since, under particular assumptions that will
be made clear in the sequel, it will Taylor expand to a Dirichlet energy term that will be crucial in the
rest of the proof.



42 2. Regularity results

Provided we use the notion of weak tangent space, see Definition 1.1.11, we have a
well-defined notion of excess for integer rectifiable m-currents.

Definition 2.1.16. The excess of an integer rectifiable m-current S at p on the ball
Br(p) of radius r with respect to π is:

E(S, p, r, π) :=
1

rm

∫
Br(p)

∥TxS − π∥2d∥S∥(x). (2.1.5)

The excess of S at point p in the ball Br(p) of radius r is

E(S, p, r) := min {E(S, p, r, π) | π is an oriented m-plane}. (2.1.6)

2.1.17. Remark. For notation purposes, we denote by gr(f) the graph of a function f
and if f is Lipschitz continuous we denote by Lip(f) its Lipschitz constant. When we say
that the current T is a graph of a function, what it formally means is that T = Jgr(f)K.
We also remark that, in general, E(T, p, r) may be achieved on a m-plane π0 so that the
function f that parametrizes the submanifold as a graph is defined as f : Br(p, π0) → π⊥

0 .
Nevertheless, as we are going to remark later, since Lip(f) is small, it is without loss of
generality to assume π0 is the (oriented) horizontal plane Rm×{0} so that we can write
f : Br(p,Rm) → Rn. We will simply write Br(p) for Br(p,Rm).

To highlight the importance of the codimension n, we state now the following “the-
orem”.

Theorem 2.1.18 (False De Giorgi-Allard). There exists ε0 > 0 such that if E(T, p, r) <
ε0 and if T ∈ Rm(Rn+m) is area-minimizing, then T is a single C1,α-submanifold in
Br/2(p).

2.1.19. Remark. The above “theorem” is, in general, false: a counterexample is the
holomorphic curve

Γ = {(z, w) ∈ C2 : z2 = w3}.

In Section 2.1.2 we will show that E(JΓK, p, r) → 0 for r → 0 but it is not possible to
write it as a graph of a (single-valued) function. Theorem 2.1.18 turns out to be true
only if we assume n = 1.

2.1.20. Remark. Once we have established that in Br(p) the current T is a single C1,α-
submanifold, then we can write the associated partial differential system of equations
for the function f that parametrizes the submanifold as a graph f : Br/2(p) → Rn and
by classical regularity theory for second order elliptic systems of differential equations
we conclude that the submanifold is smooth (in fact analytic, using the classical result
by Morrey, see [81]).
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Baby version of De Giorgi-Allard’s Theorem

Theorem 2.1.21 (Baby De Giorgi-Allard). Let T ∈ Rm(Rn+m) area-minimizing. As-
sume T is a graph of a Lipschitz function f : Br(p, π0) → π⊥

0 and assume Lip(f) is
sufficiently small in its domain, then f ∈ C1,α(Br/2(p, π0),Rn).

2.1.22. Remark. As always in the theory of partial differential equations, the proof of
C1,α-regularity comes with some estimates. We will see that, in the end, ∥f∥C1,α will be
estimated in terms of the excess, showing also from this baby version that there is hope
to relax the two very strong assumptions of being parametrized by a Lipschitz graph
with small Lipschitz constant4.

The core of the proof of Theorem 2.1.21 is a decay estimate, usually called excess
decay estimate: under the assumption that the Lipschitz graph has sufficiently small
Lipschitz constant we want to show that the excess at every point p in Br(p) decays as

E(T, p, r) ≤ C r2α (2.1.7)

where C is a constant depending only on the excess at the largest scale.

2.1.23. Remark. To obtain (2.1.7) several novel ideas were combined together: the crucial
point is to note that a similar decay estimate holds for harmonic function and if the
current T satisfies the assumptions of Theorem 2.1.21, then T is close to the graph of a
harmonic function and we can transfer such harmonic decay to T .

To prove Theorem 2.1.21 we now state some preliminary geometric lemmas that
will highlight the connections between the excess E(T, p, r) and the regularity of the
Lipschitz function f : Br(p, π0) → π⊥

0 .

Lemma 2.1.24. On a Lipschitz graph T , there exist two constants C and C̃ such that

Cmin

 
PRm

|Df(x)− A|2dx ≤ E(T, p, r) (2.1.8)

and

E(T, p, r) ≤ C̃min

 
PRm

|Df(x)− A|2dx (2.1.9)

where the minimum is taken among all affine functions A(x) : Rm → Rn, PRm is the
projection of Br(p, π0) onto Rm and by

ffl
we mean the average integral.

2.1.25. Remark. The constants C and C̃ bounding E(T, p, r) can be shown to converge
to 1 when Lip(f) → 0. Moreover, note that the quantity

min

 
PRm

|Df(x)− A|2dx

4The assumption of a sufficiently small Lipschitz constant is necessary: in general, there exist Lip-
schitz solutions to the minimal surface system which are not of class C1, see [70].
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is the L2-norm of some function minus a constant: hence we can write

min

 
PRm

|Df(x)− A|2dx =

∫
PRm

∣∣∣Df(x)−  
PRm

Df
∣∣∣2. (2.1.10)

Hence, if we are able to prove that the excess decay (2.1.7) holds true, then this
would imply that Df decays as well at the same rate. More formally, by (2.1.7), Lemma
2.1.24 and (2.1.10) we would get

 
PRm

∣∣∣Df(x)−  
PRm

Df
∣∣∣2 ≤ C r2α (2.1.11)

and (2.1.11) is known as a Morrey-Campanato estimate. We recall the following result
from elliptic regularity theory for partial differential equations.

Theorem 2.1.26 (Morrey-Campanato). Let Ω ⊆ Rm be an open set. If g ∈ L1(Ω,Rmn)
and there exists a constant C independent of r and x such that

 
Br(x)

∣∣∣ g −  
Br(x)

g
∣∣∣2 ≤ C r2α for every Br(x) ⊂ Ω

then g ∈ C0,α(Ω,Rmn).

2.1.27. Remark. To be able to apply Theorem 2.1.26 to (2.1.11) we need a uniform control
with respect to r and x in the excess decay proof. Nevertheless, going through the proof
carefully, one realizes that the constant C in (2.1.11) blows up when x approaches the
boundary of the domain ∂Br(p). Therefore, if we restric our analysis to a smaller ball
Br/2(x, π0) ⊂ Br(x, π0) then we obtain a uniform control of C: this is why we conclude
f ∈ C1,α in Br/2(p, π0).

We state formally the excess decay we want to prove.

Proposition 2.1.28 (Excess decay). There exist η, ε̄ < 1 such that if Lip(f) < ε̄, then

E
(
T, p,

r

2

)
≤ ηE(T, p, r). (2.1.12)

2.1.29. Remark. Note that from Theorem 2.1.28 and the discussion above, we can easily
get (2.1.11) by iteration: apply (2.1.12) k-times5 to get

E
(
T, p,

r

2k

)
≤ ηkE(T, p, r) = 2−k(− log2 η)E(T, p, r).

Denoting 2α := − log2 η we conclude getting

E
(
T, p,

r

2k

)
≤ (2−k)2αE(T, p, r)

where ρ := r/2k and (2−k)2α = (ρ/r)2α.

5The monotonicity formula plays a fundamental role in this step.
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Hence if we prove Proposition 2.1.28 we conclude the proof of Theorem 2.1.21. In
order to prove Proposition 2.1.28 we will divide the proof into three main steps that we
summarize here:

1. By a Taylor expansion of the Hilbert-Schmidt norm we will state some useful
estimates of the excess. Exploiting the assumption that Lip(f) is small enough,
we will then rephrase the problem in terms of a decay estimate that, once proved,
will imply Proposition 2.1.28.

2. We are going to prove two lemmas that will show De Giorgi’s fundamental idea:
when Df is very small, the area functional is well-approximated by the Dirichlet
energy, telling us that minimizers of the area functional are, in some sense, very
close to harmonic functions.

3. Finally we will prove (by means of spherical harmonics expansion) that harmonic
functions satisfy a stronger decay estimate and we will transfer such decay to the
Lipschitz minimizer of the area functional f .

2.1.30. Remark. Recall that the excess was defined as

E(gr(f), p, r) = min
π

1

rm

∫
gr(f)∩Br(p)

∥Txgr(f)− π∥2 dHm(x).

Note that, up to rotating the coordinate system and increasing Lip(f) by a controlled
small amount, we can assume without loss of generality that the plane π0 which mini-
mizes the excess is the (oriented) horizontal plane Rm×{0}; indeed, under the condition
that T is a graph of a Lipschitz function with small Lip(f), then the “tilt” of π0 to the
horizontal plane is controlled.

Moreover, without loss of generality we can assume r = 1. Indeed, we can apply
a homothety mapping x 7→ x/r, that is sending Br(p) into B1(p): the homothetic
submanifold is still area-minimizing among the class of new competitors and the excess
is scale-invariant under homotheties.

By Remark 2.1.30 we can write

∥Txgr(f)− π0∥2= ∥Txgr(f)− Rm × {0}∥2.

Now note that since we used the Hilbert-Schmidt norm for linear functions, by a simple
Taylor expansion we get

∥Txgr(f)− Rm × {0}∥2 = |Df |2+O(|Df |4)
= |Df |2+O((Lip(f))2|Df |2)
∼ |Df |2(1 + C (Lip(f))2).

(2.1.13)

Hence, denoting ε := Lip(f), by (2.1.13) we can write



46 2. Regularity results

1

2

∫
B(1−c

√
ε̄)

|Df |2≤ E(gr(f), p, 1) [1 + Cε̄2]. (2.1.14)

where C is a geometric constant, depending only on the dimension. In a similar way6,
the following inequality can be proved:

E(gr(f), p, 1/2) ≤ 1

2

(∫
B1/2

∣∣∣Df −
 
B1/2

Df
∣∣∣2) [1 + Cε̄2]. (2.1.15)

2.1.31. Remark. In the left-hand side of (2.1.14) we integrate on the ball of radius 1−c
√
ε̄.

Roughly speaking, this comes from a fine comparison between the intersection of gr(f)
with a cylinder and with the sphere. Since f is not in general a constant function, we
need to control by a factor that takes into account the fact that f may change, but this
change is controlled by the Lipschitz constant ε̄. On the other hand, we do not write
1− c

√
ε̄ on the right-hand side of (2.1.15), since in this case we look at the excess in the

1/2-ball which is fully inside the cylinder of radius 1/2.

Summarizing, with π0 = Rm × {0}, r = 1 and for η < 1 then (2.1.12) becomes:

E

(
T, p,

1

2

)
≤ ηE(T, p, 1). (2.1.16)

Putting together (2.1.16) with (2.1.14) and (2.1.15) we realize that if we are able to
prove that, for C̃ < 1, the following is true(

1

2

∫
B1/2

|Df −
 
B1/2

Df |2
)

≤ C̃

(
1

2

∫
B(1−C

√
ε̄)

|Df |2
)
, (2.1.17)

then we prove (2.1.12) as well since ε can be chosen sufficiently small.
We can state the following Lemma, that will allow us to conclude the proof of The-

orem 2.1.21.

Lemma 2.1.32. For every σ > 0 there exists ε > 0 such that if ε̄ < ε then∫
B1/2

∣∣∣Df −
 
Df
∣∣∣2 ≤ (1

4
+ σ

)∫
B(1−c

√
ε̄)

|Df |2. (2.1.18)

2.1.33. Remark. Note that Lemma 2.1.32 remarks that the constant C̃ < 1 in (2.1.17)
can be achieved to be as close as we want to 1/4. This is important since we are going
to prove a similar stronger decay for harmonic functions.

Proof. We argue by contradiction: we want to show that there exists σ̄ > 0 such that
there exists a sequence of Lipschitz functions (fk)k with

6That is, by Taylor expansion and by observing that the affine plane minimizing E(gr(f), p, 1/2) is
not far from the average.
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i) fk(0) = 0 for all k (up to a translation);

ii) Lip(fk) =: ε̄k → 0 for k → ∞;

iii) gr(fk) is an area-minimizing7 submanifold for all k such that∫
B1/2

∣∣∣Dfk −  
Df
∣∣∣2 ≥ (1

4
+ σ̄

)∫
B(1−C

√
ε̄k)

|Dfk|2. (2.1.19)

Now rescale (fk)k in such a way each Dirichlet energy is unitary. To do so, define

gk :=
fk( ∫

B(1−C
√

ε̄k)
|Dfk|2

)1/2
and notice gk has a uniform bound in W 1,2(B1,Rn). Hence, by Rellich’s theorem

gk → g in L2(B1,Rn), for some g ∈ W 1,2(B1,Rn). (2.1.20)

We now state two key steps in the proof.

Claim 2.1.34. g is harmonic.

Claim 2.1.35. gk converges strongly in W 1,2(B,Rn) for every ball B ⊂⊂ B1.

As an immediate corollary of Claim 2.1.35, we have∫
B

|Dgk|2→
∫
B

|Dg|2,

as long as B is compactly contained in B1. Assume Claim 2.1.34 and Claim 2.1.35
to be true and note (2.1.19) holds for (gk)k as well since (2.1.19) is invariant under
multiplications of fk by constants. By Claim 2.1.35 we can write∫

B1/2

∣∣∣Dgk −  
Dgk

∣∣∣2 → ∫
B1/2

∣∣∣Dg −  
Dg
∣∣∣2. (2.1.21)

Moreover we know that, up to a nonrelabeled subsequence,

Dgk 1B(1−C
√

ε̄k)
⇀ Dg in L2(B1,Rmn), (2.1.22)

where 1 denotes the indicator function. By lower semicontinuity of the norm with respect
to weak convergence we can write∫

B1/2

∣∣∣Dg −  
Dg
∣∣∣2 ≥ (1

4
+ σ̄

)∫
B1

|Dg|2. (2.1.23)

7One will realize that stationary would have been enough.
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By Claim 2.1.34 and the mean value property of harmonic functions we can rewrite
(2.1.23) as ∫

B1/2

|Dg −Dg(0)|2≥
(
1

4
+ σ̄

)∫
B1

|Dg|2. (2.1.24)

In particular, (2.1.24) shows that the harmonic map g is ̸= 0, since8∫
B1/2

|Dg −Dg(0)|2≥
(
1

4
+ σ̄

)
> 0.

At this point, we show that harmonic functions admits the following decay estimate:

Claim 2.1.36. ∫
B1/2

|Dg −Dg(0)|2≤ 1

2m
1

4

∫
B1

|Dg|2. (2.1.25)

Once Claim 2.1.36 is proved, we contradict (2.1.24), concluding the proof of Theorem
2.1.21. Hence, all we need to prove is Claim 2.1.34, Claim 2.1.35 and Claim 2.1.36.

Proof of Claim 2.1.34.
By assumption fk is a minimizer of area functional for all k. Fix a test function

φ ∈ C∞
c (B1,Rn) so that we can write

d

dε
M(gr(fk + εφ))|ε=0= 0. (2.1.26)

The mass of gr(fk + εφ) is given (in general codimension n) by:

M(gr(fk + εφ)) =

∫ √
1 + |D(fk + εφ)|2+

∑
k-minors

(det(M))2, (2.1.27)

where the sum is over all k × k minors M of D(fk + εφ). Hence we have

0 =
d

dε
M(gr(fk + εφ))|ε=0 =

∫
⟨Dfk, Dφ⟩+O(|Dfk|3·|Dφ|)√

1 + |D(fk + εφ)|2+
∑

k-minors(det(M))2

(a)
=

∫
⟨Dfk, Dφ⟩+O(|Dfk|3·|Dφ|)

(b)
=

∫
⟨Dfk, Dφ⟩+O(|Dfk|·|Dφ|· ε̄2k)

(c)
=

∫
⟨Dgk, Dφ⟩+O

(∫
|Dgk|· ε̄2k · ∥Dφ∥C0

)
,

(2.1.28)

where in (a) we Taylor expanded the denominator, in (b) we noted that |Dfk| can be
controlled since |Dfk|≤ ε̄k and in (c) we divided by a constant passing to gk.

8This is an important remark since the harmonic function g ≡ 0 would satisfy (2.1.23), not allowing
us to conclude the contradiction argument.
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Now, since k → ∞ we know gk ⇀ g in W 1,2(B1,Rn), O converges to 09 and Dφ is a
fixed test function, then we get

0 =

∫
⟨Dg,Dφ⟩ for all φ ∈ C∞

c (B1,Rn). (2.1.29)

We conclude that g is harmonic.

Proof of Claim 2.1.35.
Note that we can test equality (2.1.26) with (φfk) instead of φ, since (φfk) is still

a (Lipschitz) compactly supported perturbation. Hence, (2.1.28) is analogous and we
reach

0 =

∫
⟨Dgk, D(φgk)⟩+O

(∫
|Dgk|· ε̄2k · ∥D(φgk)∥C0

)
. (2.1.30)

Expanding (2.1.30):∫
φ|Dgk|2= −

∫
gk⟨Dgk, Dφ⟩+ vanishing terms as k → ∞. (2.1.31)

Now let ε̄k
k→∞→ 0 and note that by (2.1.20) and (2.1.22) we get

gkDgk ⇀ gDg in L2. (2.1.32)

So by (2.1.31) and (2.1.32) we can write

lim
k→∞

∫
φ|Dgk|2= −

∫
g⟨Dg,Dφ⟩ = −

(∫
⟨Dg,D(gφ)⟩ −

∫
|Dg|2φ

)
=

∫
|Dg|2φ,

(2.1.33)

where the last passage follows from Claim 2.1.34. Hence we get

lim
k→∞

∫
|Dgk|2φ =

∫
|Dg|2φ, (2.1.34)

concluding strong L2-convergence of Dgk in a compactly contained ball B ⊂⊂ B1. Now
we prove Claim 2.1.36, concluding the proof of Theorem 2.1.21.

Proof of Claim 2.1.36.
Recall that we want to prove that if g is harmonic then∫

B1/2

|Dg(x)−Dg(0)|2 ≤ 1

4 · 2m

∫
B1

|Dg(x)−Dg(0)|2

≤ 1

4 · 2m

∫
B1

|Dg(x)|2.
(2.1.35)

9Since we can easily uniformly control |Dgk| by Hölder’s inequality, by the fact its Dirichlet energy
is equal to 1 and by the fact ε̄ → 0 as k → ∞.
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Note that without loss of generality we can assume Dg(0) = 010 Moreover, it is enough
to prove11 ∫

B1/2(x)

|g(x)|2≤
(
1

2

)m+2 ∫
B1(x)

|g(x)|2. (2.1.36)

Harmonic functions are real analytic, so we can write

g(x) =
∞∑
i=1

Pi ,

where Pi are (vectors of) homogeneous polynomials of degree i. If g is harmonic, then Pi

are harmonic polynomials for every i. Since harmonic polynomials of different degrees
are L2-orthogonal when restricted to the unit sphere (see [101, Ch.5 Section 2]), for any
fixed r we can write the following identity:∫

Br

|g(x)|2dx =
∞∑
i=1

∫
Br

|Pi(x)|2=
∞∑
i=1

ci r
m+2i, (2.1.37)

where ci are constants given by the integration of |Pi(x)|2 on the ball of radius r. In
particular, for r = 1 and r = 1/2 we have∫

B1/2

|g(x)|2=
∞∑
i=1

ci

(
1

2

)m+2i

=
1

2m

∞∑
i=1

ci

(
1

2

)2i

(2.1.38)

and ∫
B1

|g(x)|2=
∞∑
i=1

ci. (2.1.39)

From (2.1.38) and (2.1.39), we can easily show that∫
B1/2(x)

|g(x)|2≤
(
1

2

)m+2 ∫
B1(x)

|g(x)|2, (2.1.40)

concluding the proof of Theorem 2.1.21.

We end this section with few remarks and two corollaries of Theorem 2.1.21.

2.1.37. Remark. Note that the proof of Theorem 2.1.21 works in every codimension,
since we never used the assumption n = 1. Hence, everytime it is possible to “well”-
approximate an area-minimizing current with a graph of a Lipschitz function with small
Lipschitz constant, then some perturbation of the proof of Theorem 2.1.21 can be still ap-
plied. Unfortunately, it is not always the case that an integer rectifiable area-minimizing
current with sufficiently small excess is “close” to the graph of a (single-value) Lipschitz
function; this is true in codimension n = 1 only. We will investigate better the case
n ≥ 2 in the next section.

10Since g is harmonic, then Dg(x)−Dg(0) is harmonic as well.
11Since we want to prove Claim 2.1.36 for any arbitrary harmonic function and if g is harmonic then

Dg is also harmonic.
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2.1.38. Remark. We highlight the importance of the quadratic decay of the excess in
(2.1.7). In codimension higher than 1, De Giorgi’s variational idea will still play a very
important role, together with an almost quadratic decay of the excess.

2.1.39. Remark. Arguably, the most important insight of the proof of Theorem 2.1.21 is
the harmonicity of the limit g. Indeed, (gk)k are minimizers of the area functional with
Lip(gk) → 0. We remark once again that the fundamental idea relies on the observation
that if one computes the area functional on a graph (assume for simplicity that n = 1)

F (u) =

∫ √
1 + |Du|2

then the Taylor expansion of the integrand is the following:

1 +
|Du|2

2
+ higher order terms.

Roughly speaking, the area functional is “very close” to be the Dirichlet energy when
the gradients are very small. Hence, an area-minimizing current T is “very close” to the
graph of a harmonic function.

As a consequence of De Giorgi-Allard ε-regularity theorem it is possible to prove the
following corollary.

Corollary 2.1.40. If T is an area-minimizing current of dimension m in Rm+1,12 then
any point p, at which there is a flat tangent cone, is a regular point. In particular, we
conclude that ∥T∥(Sing(T )) = 0.

Even if in higher codimension things change dramatically, it is still possible to prove
the following result, which was the best higher codimension regularity theorem available
before Almgren’s theorem (Theorem 2.1.2).

Corollary 2.1.41. [94, Theorem 36.2] If T is an integer rectifiable area-minimizing cur-
rent of dimension m in Rm+n and n ≥ 1, then Reg(T ) is dense in supp(T )\ supp(∂T )13.

2.1.2 Area-minimizing currents in higher codimension

If n ≥ 2, we have already seen that it is somehow easy to show Theorem 2.1.2 is optimal.
Recall we considered the following holomorphic curve

Γ = {(z, w) ∈ C2 : z2 = w3}. (2.1.41)

One can see that the origin belongs to Sing(JΓK) and we proved in Theorem 2.1.5 that
the current JΓK is (locally) area-minimizing. If we identify C with R2, it is simple to

12Or, more generally, in a C2-submanifold Σ of dimension m+ 1.
13This statement has been recently extended to any Hilbert space, see [8], using the tool of metric

currents, see [9].
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see that Γ is an immersed (real) 2-dimensional submanifold, globally parametrized, for
instance, by the map:

u : {(ρ, θ) : ρ > 0, θ ∈ [0, 2π)} −→ R4

given by

(ρ, θ) 7→
(
ρ cos θ, ρ sin θ, ρ

3
2 cos(3θ), ρ

3
2 sin(3θ)

)
. (2.1.42)

Nevertheless, Γ is not an embedded submanifold in a neighborhood of the origin, because
it is not a graph over the plane

π := {(z, w) ∈ C2 : z = 0} ⊂ R4, (2.1.43)

no matter how small is the neighborhood U of the origin that we choose. The unique
flat tangent cone at 0 is given by 2JπK for π as in (2.1.43) and the density Θ(JΓK, 0) = 2.

The origin is a typical example of branch point (sometimes called ramification point).
Moreover, it is important to notice that if we evaluate the excess E(JΓK, 0, r), which was
the main parameter to detect regularity in a point in codimension 1, one can show that

E (JΓK, 0, r) → 0 for r → 0.

We conclude that, even if the excess at a point can be made arbitrarily small (hence
smaller than the ε-threshold that would have ensured the point 0 to be a regular point
in the codimension 1 ε-regularity theorem), this does not guarantee anymore that JΓK
is well-approximated by a single graph of a Lipschitz function. Hence Corollary 2.1.40
is false for 2-dimensional area minimizing currents in R4: JΓK is singular at the origin
in spite of the existence of a flat tangent cone. However, in examples like (2.1.41), the
current turns out to be a “multivalued” graph, where the number of values is in fact
determined by the multiplicity Q = Θ(JΓK, 0) = 2.

The main goal is to write a non-parametric problem for objects like the complex
curve in (2.1.41). The starting point of Almgren’s Big Regularity Paper, see [6] and
[42, 43, 44, 45, 46] for a shorter and improved version, is indeed to replace harmonic
(single-valued) functions with multiple-valued functions minimizing a suitable notion of
“Dirichlet energy”, developing a whole new theory and a first-order calculus for these
peculiar maps.

The space of Q-points AQ(Rn)

Consider again the current JΓK in (2.1.41). The support of such current, namely the
complex curve Γ, can be viewed as the graph of a function which associates to any
w ∈ C two points in the z-plane:

w 7→ {z1(w), z2(w)} with zi(w)
2 = w3 for i = 1, 2. (2.1.44)

The map in (2.1.44) is an example of a 2-valued function. From now on, let Q ⩾ 1
be a fixed positive integer. Roughly speaking, Q-valued functions can be considered
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as mappings taking their values in the unordered sets of Q-points of Rn, taking into
account the fact that we may have a multiplicity. More precisely, we have the following
definition.

Definition 2.1.42. Denote by JPiK the Dirac delta in Pi ∈ Rn and define the space of
Q-points as

AQ (Rn) :=

{
Q∑
i=1

JPiK : Pi ∈ Rn for every i = 1, . . . , Q

}
.

2.1.43. Remark. Observe that the notation JPiK to denote the Dirac delta δPi
is consistent

with the notion of current associated to a submanifold. Indeed, if P ∈ Rn then the action
of the 0-current associated to P is precisely given by

JP K(f) = f(P ) for every f ∈ C∞
c (Rn).

2.1.44. Remark. In other words, Definition 2.1.42 identifies the space of Q unordered
points in Rn with the set of positive atomic measures of mass Q and note that the
points Pi ∈ Rn are not necessarily different (for example, QJP K ∈ AQ (Rn)). Moreover,
we remark that the absence of the order for points in AQ (Rn) is fundamental: A2(Rn)
cannot be identified with Rn × Rn.

We will sometimes use the notations AQ and
∑

iJPiK when n and Q are clear from
the context.

2.1.45. Remark. Note that AQ (Rn) is just the quotient of (Rn)Q via the action of the
group of permutations of Q indexes SQ. In other words, defining the equivalence relation

(P1, . . . , PQ) ∼
(
Pσ(1), . . . , Pσ(Q)

)
for all σ ∈ SQ,

then
AQ ≃ (Rn)Q /∼ .

It follows then that the space of Q-points, though it is not a linear space14, inherits
many properties from the Euclidean space.

2.1.46. Remark. One of the major novelties of De Lellis and Spadaro’s works with respect
to Almgren’s theory is that they avoid lots of combinatorial arguments, just considering
AQ as an abstract metric space. For this reason De Lellis and Spadaro’s metric approach
to Q-valued functions is sometimes named intrinsic theory, as opposed to Almgren’s
extrinsic one. Indeed, in [6], Almgren developed the theory of Q-valued function mostly
using two maps: the first one is a bi-Lipschitz embedding ξ of AQ (Rn) into RN(Q,n),
where N(Q, n) is a sufficiently large integer. By means of the map ξ one can define a
Sobolev theory for Q-valued functions as classical RN -valued Sobolev maps taking values
in ξ(AQ). The second map ρ is a Lipschitz retract of RN(Q,n) onto ξ(AQ), which is useful
in various approximation arguments.

14Unless the trivial case Q = 1.
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Definition 2.1.47. For every T1, T2 ∈ AQ (Rn), with T1 =
∑

iJPiK and T2 =
∑

iJSiK,
we define

G (T1, T2) := min
σ∈SQ

√∑
i

∣∣Pi − Sσ(i)

∣∣2. (2.1.45)

2.1.48. Remark. One can realize that G coincides with the L2-Wasserstein distance on
the space of positive measures with finite second moment (see [102]). It is immediate to
see that (AQ (Rn) ,G) is a complete, locally compact and separable metric space.

Definition 2.1.49. Let Ω ⊂ Rm open, bounded with smooth boundary. A Q-valued
function is a map

f : Ω → (AQ (Rn) ,G) .

2.1.50. Remark. We say that a Q-valued function f is continuous (Lipschitz, Hölder
and measurable respectively) is it is so as function between metric spaces. Similarly,
u ∈ Lp (Ω,AQ) , 1 ≤ p ≤ ∞, if x 7→ G(u(x), QJ0K) ∈ Lp(Ω)15.

Any measurable Q-valued function admits the following representation in measurable
selections.

Proposition 2.1.51. Let B ⊂ Rm be a measurable set and let f : B → AQ be a
measurable function. Then, there exist f1, . . . , fQ measurable Rn-valued functions such
that

f(x) =

Q∑
i=1

Jfi(x)K for a.e. x ∈ B.

We call such a representation measurable selection (or measurable superposition).

2.1.52. Remark. The proof of Proposition 2.1.51 is done by induction on the number of
values of Q, making use of the following observation: if

⋃
i∈NBi is a covering of B by

measurable sets, then it is sufficient to find a measurable selection of f|Bi∩B
for every i.

2.1.53. Remark. Roughly speaking, by Proposition 2.1.51 we can see every measurable
Q-valued function as a “sum” (very far from being unique) of Q measurable16 functions,
called selections (or superpositions). Hence, Jfi(x)K are Dirac deltas at points fi(x) and
they have to be though as just labels to name each single value.

Since the final goal is to analyze minimizers of the area functional, we need to intro-
duce a notion of derivative for such functions and to develop a first-order calculus.

15Since Ω is bounded, this is equivalent to ask that ∥G(u, T )∥Lp is finite for every T ∈ AQ.
16In general, even if u is regular, one cannot expect (globally) more than measurability of the selec-

tions.
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Sobolev Q-valued functions

We introduce the Sobolev spaces of functions taking values in the metric space of Q-
points. The approach is based on the pioneering work by Ambrosio in [7], see also [88,
89, 90], by looking at composition with Lipschitz functions.

Definition 2.1.54. A measurable function f : Ω → AQ is in the Sobolev class W 1,p

(1 ≤ p ≤ ∞) if there exist m positive functions φj ∈ Lp(Ω) such that for every T ∈ AQ

we have:

i) x 7→ G(f(x), T ) ∈ W 1,p(Ω),

ii) |∂jG(f(x), T )|≤ φj(x) a.e. in Ω for all j = 1, . . . ,m.

2.1.55. Remark. One can show f ∈ W 1,p(Ω,AQ) if and only if there exists ψ ∈ Lp(Ω)
such that, for every F : AQ → R Lipschitz,

F ◦ f ∈ W 1,p(Ω) and |D(F ◦ f)|≤ Lip(F ) ψ a.e. in Ω.

One implication of the proof is trivial, the converse follows by fixing {Ti}i∈N a countable
dense subset, by McShane’s extension theorem (see, for instance [10, Theorem 3.1.2])
and by choosing

ψ :=

(∑
j

(
sup
i∈N

|∂jG (f, Ti)|
)2
)1/2

.

A first step in the analysis of the area functional is to study its linearized version.
Hence, we need to introduce a notion of “modulus” of the gradient of a Sobolev function
in order to define a suitable notion of Dirichlet energy in this framework. What we mean
by suitable is that it appears as the first nontrivial term in the Taylor expansion of the
mass of (the current associated to) a multivalued graph.

Definition 2.1.56. Let f : Ω → AQ. Fix a countable dense subset {Ti}i∈N of AQ. For
every j = 1, . . . ,m, we define

|∂jf | := sup
i∈N

|∂jG (f, Ti)| and |Df |2:=
m∑
j=1

|∂jf |2 .

2.1.57. Remark. Definition 2.1.56 is well-posed since it does not depend on the choice
of the countable set. Note that in Definition 2.1.56 |Df |2 is just a positive quantity
depending only on the metric structure of AQ.

2.1.58. Remark. For functions on a general Riemannian manifold (M, g), we choose an
orthonormal frame X1, . . . Xm and set |Df |2:=

∑
|∂Xi

f |2. This definition is independent
of the choice of coordinates (respectively, of the frames), see [42, Prop. 2.17].

All the metric notions we have introduced so far would still be well-defined for maps
with values in any complete separable metric space. In the special case of Q-valued
maps, it is also possible to give a notion of pointwise derivative.
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Definition 2.1.59. Let f : Ω → AQ and x0 ∈ Ω. We say that f is differentiable at x0
if there exist Q matrices L1, . . . , LQ and a selection f1, . . . , fQ such that:

(i) lim
x→x0

(x− x0)
−1G (f(x), Tx0f) = 0, where

Tx0f(x) :=

Q∑
i=1

JLi · (x− x0) + fi (x0)K,

(ii) fi (x0) = fj (x0) implies Li = Lj for all i, j ∈ {1, . . . , Q}17.

The Q-valued map Tx0f is called the first-order approximation of f at x0.

2.1.60. Remark. It is useful to fix the notation Dfi for Li in Definition 2.1.59. Note
that by (ii) this is unambiguous: namely, if g1, . . . , gQ is a different selection for f ,
x0 a point of differentiability and σ a permutation such that gi(x0) = fσ(i)(x0) for all
i ∈ {1, . . . , Q}, then Dgi(x0) = Dfσ(i)(x0). When the fi’s are a differentiable functions
and f is differentiable, then the Dfi’s coincide with the classical differentials.

2.1.61. Remark. Note that according to Definition 2.1.59, the origin in (2.1.41) is a point
of differentiability for the multivalued function having Γ as a graph.

The pointwise differentiability property would be an empty definition unless there
exist some functions that satisfy it. Hence we have the following theorems.

Theorem 2.1.62 (Generalized Rademacher). Let f : Ω → AQ be a Lipschitz func-
tion. Then, f is differentiable almost everywhere in Ω with respect to the m-dimensional
Lebesgue measure.

We summarize below the main steps of the proof.

Proof. The main idea to treat multiple-valued functions is to distinguish among their
multiplicities and apply an induction argument on Q.

• For Q = 2, consider Ω̃ := {x ∈ Ω : f1(x) = f2(x)}, the set of points where f takes
a single value with multiplicity 2.

• It is easy to show that in Ω \ Ω̃ one can apply the classical Rademacher’s theorem.

• Then one considers all (“well-behaved”) points x ∈ Ω̃ such that Ω̃ has density 1
and (a Lipschitz extension g of) f1 is differentiable: on all these points one proves
that f is differentiable in terms of Q-valued map with first-order approximation
given by

Txf(y) = 2JDg(x)(y − x) + g(x)K.

• By the Lebesgue differentiation theorem and a projection argument, one concludes
the case Q = 2. For further Q’s one proceeds by induction.

17This second condition is sometimes called “no-crossing condition”.
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It is now rather simple to prove that every Sobolev Q-valued function is in fact
“approximately” pointwise differentiable at almost every point. Indeed, as for the clas-
sical theory, one can prove that a Lusin-type approximation holds for Q-valued Sobolev
functions.

Definition 2.1.63. A Q-valued function f is approximately differentiable in x0 if there
exists a measurable subset Ω̃ ⊂ Ω containing x0 such that Ω̃ has density 1 at x0 and f|Ω̃
is differentiable at x0.

Proposition 2.1.64 (Lipschitz Approximation). [42, Prop. 4.4] There exists a constant
C = C(m,Ω, Q) with the following property. For every f ∈ W 1,p(Ω,AQ) and every
λ > 0, there exists a Q-function fλ such that Lip(fλ) ≤ Cλ and

Lm ({x ∈ Ω : f(x) ̸= fλ(x)}) ≤
C

λp

∫
Ω

|Df |p,

where |Df | is defined as in Definition 2.1.56.

2.1.65. Remark. In the classical theory, one of the most efficient ways to approximate
Sobolev functions by smooth functions is via regularization by convolution. Neverthe-
less, this method cannot be applied in the metric framework since AQ is not a linear
space, hence it is not possible to integrate a kernel against a function. What still
works in a much more general setting is another method usually known as “truncation
along the maximal function of the gradient”, see [66]. Coupling this procedure with a
generalized Lipschitz extension theorem and Theorem 2.1.62, one concludes that any
f ∈ W 1,p(Ω,AQ) is approximately differentiable at almost every point.

At this point one could show that the “modulus of the gradient”, as defined in
Definition 2.1.56, and the pointwise differential are linked.

Proposition 2.1.66. [42, Proposition 2.17] For every f ∈ W 1,2 (Ω,AQ) and every j =
1, . . . ,m, we have

|Df |2=
∑
i

|Dfi|2 a.e.,

where |Li| denotes the Hilbert-Schmidt norm of the matrix Li.

2.1.67. Remark. Proposition 2.1.66 justifies the metric definition |Df |2 in 2.1.56. Indeed,
when the Q-valued function f is the superposition of Q smooth functions f1, . . . , fQ, then
the first-order expansion of the area functional is given by |Dfi|2, for each i.

The usual notion of trace at the boundary can be easily generalized in this setting.

Definition 2.1.68. Let Ω ⊂ Rm be a bounded open set with Lipschitz boundary and
f ∈ W 1,p (Ω,AQ). A function g belonging to Lp (∂Ω,AQ) is said to be the trace of f at
∂Ω (and we denote it by f|∂Ω) if, for every T ∈ AQ, the trace of the real-valued Sobolev
function G(f, T ) coincides with G(g, T ).



58 2. Regularity results

A Morrey-Campanato estimate in the spirit of Theorem 2.1.26 holds for Q-valued
functions.

Theorem 2.1.69 (Morrey-Campanato). Let f ∈ W 1,2(B1,AQ) and α ∈ (0, 1] be such
that ∫

Br(y)

|Df |2≤ Arm−2+2α for every y ∈ B1 and a.e. r ∈ (0, 1− |y|).

Then, for every 0 < δ < 1, there exists a constant C = C(m,n,Q, δ) such that

[f ]C0,α(Bδ)
:= sup

x,y∈Bδ

G(f(x), f(y))
|x− y|α

≤ C
√
A.

2.1.70. Remark. Many results of the classical theory of Sobolev spaces can be gener-
alized to the Sobolev class W 1,p(Ω,AQ), such as chain rules, existence and uniqueness
of the trace for Sobolev Q-functions, weak convergence, Sobolev embeddings, Poincaré
inequality and so on; we refer to [42] for more details.

Dir-minimizing Q-valued functions

We aim at finding solutions of minimization problems framed in the context of Q-valued
functions. In principle we should look at the minimization of the area functional, which
is a delicate problem because of its nonlinear nature. As a starting point, we begin the
investigation with the linear problem given by the minimization of the Dirichlet energy,
which now can be defined thanks to the first-order calculus developed so far.

Definition 2.1.71. The generalized Dirichlet energy of f ∈ W 1,2(Ω,AQ) is given by

Dir(f,Ω) :=

∫
Ω

|Df |2=
∑
i

∫
Ω

|Dfi|2 .

We say that a function f ∈ W 1,2(Ω,AQ) is Dir-minimizing if

Dir(f,Ω) ≤ Dir(g,Ω),

for all g ∈ W 1,2(Ω,AQ) with f|∂Ω = g|∂Ω (in the sense of Definition 2.1.68).

Now we describe three fundamental theorems in the theory of Dir-minimizing Q-
valued functions. The first theorem provides existence of Dir-minimizing functions,
while the second and the third theorems deal with regularity results: (interior) Hölder
regularity of Dir-minimizers and an estimate of the singular set. Indeed, as already
mentioned, the first step of Almgren’s theory of partial regularity for area-minimizing
currents in higher codimension is to develop a theory concerning existence and regularity
for the first nonconstant term in the area functional.

Theorem 2.1.72 (Existence of Dir-minimizing functions). Let g ∈ W 1,2(Ω,AQ). Then,
there exists a Dir-minimizing function f ∈ W 1,2(Ω,AQ) such that f|∂Ω = g|∂Ω .
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The proof of the existence theorem for Dir-minimizing functions follows by a straight-
forward application of the direct methods in the calculus of variations. Indeed, Q-valued
functions and the generalized Dirichlet energy satisfy the same results as in the classi-
cal setting, namely weak sequential compactness (see [42, Proposition 2.11]), continuity
of the trace under weak convergence (see [42, Proposition 2.10]) and weak sequential
lower semicontinuity of the Dirichlet energy (see [42, Section 2.3.2]). Once these three
properties have been proved, then we can easily conclude as follows.

Proof. Let (fk)k in W 1,2(Ω,AQ) be a minimizing sequence of functions, that is for every
k we have fk |∂Ω = g|∂Ω and

lim
k→∞

Dir(fk,Ω) = inf{Dir(h,Ω) : h ∈ W 1,2(Ω,AQ) with h|∂Ω = g|∂Ω}.

Then, by weak sequential compactness, there exists a subsequence (fkj)j which is L2-
converging to some function f , that is:

lim
j→∞

∥∥G(fkj , f)∥∥L2(Ω)
= 0.

By continuity of the trace under weak convergence we get f|∂Ω = g|∂Ω and by the lower
semicontinuity of the Dirichlet energy we conclude that

Dir(f,Ω) ≤ lim
j→∞

Dir(fkj ,Ω)

= inf
{
Dir(h,Ω) : h ∈ W 1,2 (Ω,AQ) with h|∂Ω = g|∂Ω

}
,

hence proving that f is a minimizer.

A fundamental result in the theory of higher codimension area-minimizing currents
is the Hölder continuity of Dir-minimizing Q-valued functions in the interior of Ω.

Theorem 2.1.73 (Hölder-regularity of Dir-minimizing functions). There exists a pos-
itive constant α = α(m,Q) > 0 such that if f ∈ W 1,2(Ω,AQ) is Dir-minimizing, then
f ∈ C0,α(Ω′) for every Ω′ ⊂⊂ Ω ⊂ Rm. For two-dimensional domains, we have the
explicit constant α(2, Q) = 1/Q.

Note that, although Dir-minimizing functions act as of classic harmonic functions
in the setting of Q-valued maps, they are not in general analytic. One can show that
interior Hölder continuity for Dir-minimizing functions is sharp. Indeed, not only are
holomorphic varieties examples of singular (locally) area-minimizing integral currents (as
shown in Theorem 2.1.5), but also they provide examples of Dir-minimizing Q-valued
functions. More formally one could prove the following theorem, see [6, Theorem 2.20]
and [99].

Theorem 2.1.74. Let V ⊆ B2 × R2m ⊆ R2n+2m ≃ Cn+m be an irreducible holomorphic
variety with the property that π∗JVK = QJB2K, where π is the orthogonal projection18.
Then, there exists a Dir-minimizing Q-valued function f ∈ W 1,2 (B1,AQ(R2m)) such
that graph(f) = V ∩ (B1 × Cm).

18This condition is sometimes referred to as V to be a Q : 1-cover of the ball B2 ⊆ Cn under the
orthogonal projection π onto B2.
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2.1.75. Remark. In particular, a counterexample to higher-than-Hölder regularity comes
considering the holomorphic curve Γ as in (2.1.41). We could consider a different
parametrization (that would still be a Dir-minimizing Q-valued function since its graph
is again Γ) than the one in (2.1.42), just by inverting the role of z and w.

The proof of Theorem 2.1.73 is divided into two main steps. The core of the proof
relies on the first step which, in some sense, can be considered as a “geometric differential
inequality”. Its proof strongly differs from the m = 2 to the m ≥ 3 case: indeed, while in
the planar case it is somehow not difficult to decompose a Sobolev Q-valed functions into
Sobolev selections, this cannot be said for the general case. Hence, more sophisticated
analytic results need to be employed, such as a maximum principle for Dir-minimizing
functions (see [42, Proposition 3.5]) and a decomposition theorem for Dir-minimizers
(see [42, Proposition 3.6]). The first step can be stated as follows.

Proposition 2.1.76. Let f ∈ W 1,2(Br,AQ) be Dir-minimizing and suppose that

g = f|∂Br
∈ W 1,2(∂Br,AQ).

Then, we have that ∫
Br

|Df |2≤ C(m)r

∫
∂Br

|Dg|2, (2.1.46)

where C(2) = Q and C(m) < (m− 2)−1.

2.1.77. Remark. In some sense, Proposition 2.1.76 ensures a geometric control of the
trace by means of the energy: roughly speaking it tells that every time we have a Dir-
minimizing function f and we select a “slice” ∂Br where f|∂Br

is still Sobolev, then the
“differential inequality”19 estimate (2.1.46) holds.

The second step of the proof is, instead, a standard application of the Morrey-
Campanato estimate of Theorem 2.1.69. Assuming Proposition 2.1.76 (see [42, Sections
3.3.2, 3.3.3]), we prove Theorem 2.1.73.

Proof. Set

γ(m) :=

{
2Q−1 for m = 2

C(m)−1 −m+ 2 for m > 2,
(2.1.47)

where C(m) is the constant in (2.1.46)20 and define h(r) :=
∫
Br
|Df |2. Note that h is

absolutely continuous so that, by Remark 2.1.58, we can write

h′(r) =

∫
∂Br

|Df |2≥
∫
∂Br

|∂τf |2 for a.e. r, (2.1.48)

19We call (2.1.46) “differential inequality” since the quantity on the right-hand side of (2.1.46) re-
sembles very much the derivative of the left-hand side with respect to r.

20Note that γ(m) > 0 since C(m)−1 > m− 2.
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where |∂τf |2= |Df |2−
∑Q

i=1 |∂νfi|
2. Here ∂τ and ∂ν denote the tangential and the normal

derivatives respectively. Hence, by (2.1.48) and Proposition 2.1.76 we get

h(r) ≤ 1

m− 2 + γ
rh′(r) ⇐⇒ m− 2 + γ

r
≤ h′(r)

h(r)
.

Integrating this differential inequality between r and 1, we easily obtain

h(r) ≤ rm−2+γh(1),

that is ∫
Br

|Df |2≤ rm−2+γ

∫
B1

|Df |2. (2.1.49)

By (2.1.49) and the Morrey-Campanato estimate in Theorem 2.1.69, we conclude the
Hölder continuity of f with exponent α = γ/2.

2.1.78. Remark. Note that if m = 2, by (2.1.47) we have α = 1/Q. An intuition is
that the higher the number of Q-points, the “less continuity” we are guaranteed. This
intuition is confirmed since the higher the value of Q, the smaller the exponent γ in
(2.1.49), resulting in a worse estimate.

2.1.79. Remark. Theorem 2.1.73 is about interior regularity and tells nothing about what
happens at the boundary of the original domain Ω. We mention that Hirsch [67] extends
the Hölder regularity for Dirichlet minimizing Q-valued functions up to the boundary
assuming C1-regularity of the bounded domain Ω and C0,α-regularity of the boundary
datum f|∂Ω with α > 1

2
.

We now turn to the second theorem about the regularity properties of Dir-minimizing
Q-valued functions, concerning the analysis of the singularities. In particular, we intro-
duce the following natural definition of regular and singular points.

Definition 2.1.80. A Q-valued function f is regular at a point x ∈ Ω if there exist
r > 0 and Q analytic functions fi : Br(x) → Rn such that

f(y) =
∑
i

Jfi(y)K for every y ∈ Br(x)

and either fi(y) ̸= fj(y) for every y ∈ Br(x) or fi ≡ fj. The set of regular points of f is
denoted reg(f). The singular set Σf of f is the complement of the set of regular points.

2.1.81. Remark. Note that reg(f) is open (by definition) and the singular set Σf is
relatively closed in Ω. Intersections of different selections or branch points are ruled out
from the definition of regular point, see Figure 2.1. The rationale is to define a notion
of regular point that conveys the same geometric meaning of an embedded submanifold.

The following analogous result of partial regularity for area-minimizing currents holds
in the setting of Dir-minimizing functions.
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Figure 2.1

Theorem 2.1.82 (Estimate of the singular set). Let f be a Dir-minimizing function.
The singular set Σf of f has Hausdorff dimension at most m − 2 and it is at most
countable if m = 2.

2.1.83. Remark. Note that the estimate in terms of Hausdorff dimension is the same
as in the general case of Theorem 2.1.2. The only difference is that Theorem 2.1.82
provides an estimate on the singular set in the domain Ω of the Dir-minimizing function
f . Nevertheless, in case the multiple-valued graph of f is “quite flat”, it is reasonable
to imagine the same estimate holds true for the singular set of the current.

The analysis of the singularities in higher codimension area-minimizing currents de-
pends deeply on a new monotonicity formula discovered by Almgren, that recently wit-
nessed many applications in very different fields, see for instance [59, 63]. In almost
all geometric problems, the starting point is usually a monotonicity estimate, which is
an a priori estimate on a monotone quantity related to the problem of interest, in the
same spirit of (2.1.2). A new monotonic quantity has been discovered21 by Almgren for
higher codimension area-minimizing currents and it is now named Almgren’s frequency
function.

Definition 2.1.84. Let f be a Dir-minimizing function, x ∈ Ω and 0 < r < dist(x, ∂Ω).
We define the functions

Dx,f (r) :=

∫
Br(x)

|Df |2, Hx,f (r) :=

∫
∂Br

|f |2 and Ix,f (r) :=
rDx,f (r)

Hx,f (r)
. (2.1.50)

Ix,f is called Almgren’s frequency function.

2.1.85. Remark. Note that, by Theorem 2.1.73, |f |2 is a continuous function. Hence,
Hx,f (r) is a well-defined quantity for every r. Moreover, if Hx,f (r) = 0, then by mini-
mality f|Br(x)

≡ 0. So, apart for this case, Ix,f (r) is always well-defined.

2.1.86. Remark. When x and f are clear from the context, it is customary to use
the shorthand notations D(r), H(r) and I(r). The reason why I is called frequency

21In the preface of [4], Jean Taylor recalls that Almgren started conceiving the idea of using this
particular function in a particular jogging track in Oxford.
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function can be explained by looking at its value on the planar harmonic functions
fk(r, θ) = rk cos(kθ): one can easily compute that I0,fk(r) ≡ k, which is the correspond-
ing frequency of the angular parameter. Notations Dx,f and Hx,f in (2.1.50) refers to
“Dirichlet” energy and “Height” of the function f . In a sense, Almgren’s frequency func-
tion aims at capturing “the degree of disorder” of a harmonic function, since it measures
its energy in terms of its norm on the boundary.

The most important estimate in the analysis of singular points is the following mono-
tonicity theorem.

Theorem 2.1.87 (Monotonicity). [42, Section 3.4.1] Let f be Dir-minimizing and x ∈
Ω. Either there exists ρ such that f|Bρ(x)

≡ 0 or Ix,f (r) is an absolutely continuous

nondecreasing positive function on (0, dist(x, ∂Ω)). In particular, in the latter case the
following limit exists

Ix,f (0) := lim
r→0

Ix,f (r) > 0.

2.1.88. Remark. Broadly speaking, Theorem 2.1.87 tells that the average (up to con-
stants) of the energy of a Dir-minimizing function decreases on small scales (when r → 0)
with respect to its zero-degree norm. The proof is not as enlightening as its consequences,
and it is rather elementary. The main idea is based on some simple derivation arguments
coupled with the tools of inner and outer variation of a Dir-minimizer22.

It is worth mentioning the following very important corollary, see [42, Section 3.4.2]
for a straightforward proof.

Corollary 2.1.89. Let f be Dir-minimizing in Bϱ. Then, I0,f (r) ≡ α if and only if f
is α-homogeneous, that is

f(y) = |y|αf
(
yϱ

|y|

)
. (2.1.51)

2.1.90. Remark. In (2.1.51) the following convention has been adopted: if φ is a scalar
function and f =

∑
iJfiK a Q-valued function, by φf is meant the function

∑
iJφfiK.

Blow-up analysis

The main strategy to analyze singular points is to perfororm a blow-up analysis, by
expanding homothetically a ball around the singular point, see Figure 2.2. The aim
is to exploit possible symmetries of the limiting object, reducing the complexity of the
problem.

In order to perform an effective blow-up analysis, one needs to guarantee that the
singular point is preserved in the blow-up limit, which is not granted in general. One
of the possible obstructions to persistence in the limit of a singularity is that the first

22Inner and outer variations are two natural notions of variation that can be used to perturb Dir-
minimizing Q-valued functions, see [42, Section 3.1].
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Figure 2.2

singular expansion of the object (either of the current23 or the Dir-minimizer) around its
regular part may occur with an infinite order of contact, resulting in a trivial blow-up.
The main strategy is in analogy with unique continuation theory, where a harmonic func-
tion is proved to be analytic by detecting the lowest frequency in its Taylor expansion.
Almgren’s frequency function is indeed an integral a priori estimate to detect the lowest
frequency of an object and its main use is to ensure the persistence of the singularity in
the blow-up limit.

The presence of branch points requires a different blow-up procedure than the one
that is used in the codimension one case, since an “homogeneous” blow-up around a
branch point would end up to be a flat plane, losing all the information about the
singularity. One of Almgren’s main ideas was to rescale differently the “horizontal
directions” (namely those of flat tangent cone at the point) and the “vertical directions”
(which are the orthogonal complements of the horizontal ones). This different type of
blow-up is sometimes called “inhomogeneous” blow-up (or “anisotropic” blow-up).

Since we will look at point of maximal multiplicity, we assume that f is a non-
trivial24 Dir-minimizing Q-valued function such that f(y) = QJ0K. The main idea of
inhomogeneous blow-ups is to rescale “according to the energy” in the following way:

fy,ϱ(x) :=
ϱ

m−2
2 f(ϱx+ y)√∫
Bϱ(y)

|Df |2
. (2.1.52)

23In the more general case of area-minimizing currents an “almost monotonicity” formula holds for
the frequency function, still assuring its boundedness and hence nontrivial blow-ups.

24That is,
∫
Bρ(y)

|Df |2> 0 for every ϱ.



2.1. Regularity theory for area-minimizing currents 65

2.1.91. Remark. From (2.1.52) it is easy to see that∫
B1

|Dfy,ϱ|2= 1,

showing that the energy is preserved in the limit. To simplify the notation, we will not
display the subscript y in fy,ρ when y is the origin.

To better understand this point, let us consider again the current JΓK of example
(2.1.41). Recall that its support can be seen as the graph of a function which associates
to any w ∈ C two points in the z-plane:

w 7→ {z1(w), z2(w)} with zi(w)
2 = w3 for i = 1, 2.

The right rescaling according to Almgren’s inhomogeneous blow-up is the one producing
in the limit a multiple-valued harmonic function preserving the Dirichlet energy. In the
case of Γ, the functions z1 and z2 are already harmonic functions (at least away from
the origin), since they are two determinations of the square root of w3. Hence, the
correct blow-up is the one which “keeps Γ fixed”. Hence, for every λ > 0, we consider
fλ : C2 → C2 given by

fλ(w, z) = (λ2w, λ3z),

and note that (fλ)∗JΓK = JΓK for every λ > 0.
An important result is the convergence of blow-ups fρ of Dir-minimizing functions

to some limiting Dir-minimizing functions with some extra symmetries, which are called
tangent functions.

Proposition 2.1.92. Let f ∈ W 1,2(B1,AQ) be Dir-minimizing, with f(0) = QJ0K and∫
Bϱ(y)

|Df |2> 0 for every ϱ ≤ 1. Then every sequence fϱk with ρk → 0 has a subsequence

converging locally uniformly to a function g : Rm → AQ(Rn) satisfying:

i)
∫
B1
|Dg|2= 1 and g|Ω is Dir-minimizing for any bounded Ω,

ii) g(x) = |x|αg
(

x
|x|

)
, where α = I0,f (0) > 0 is the frequency of f at 0 (that is, g is

α-homogeneous).

The proof of Proposition 2.1.92 relies on the following preliminary compactness
lemma (we refer to [42, Propositions 3.19 and 3.20] for the proofs of Proposition 2.1.92
and Lemma 2.1.93 respectively).

Lemma 2.1.93. Let fk ∈ W 1,2 (B1,AQ) be Dir-minimizing Q-valued functions such that
supk

∫
B1
|Dfk|2<∞ and fk → f uniformly. Then, for every r < 1, f|Br

is Dir-minimizing
and

lim
k→∞

∫
Br

|Dfk|2=
∫
Br

|Df |2.
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Now we can pass to the core of the estimate on the Hausdorff dimension of the
singular set of a Dir-minimizing Q-valed function. The key lemma is a control on the set
of singular points of highest multiplicity Q. More formally, Theorem 2.1.82 is an easy
consequence of the following Lemma.

Lemma 2.1.94. Let Ω be connected and f ∈ W 1,2(Ω,AQ(Rn)) be Dir-minimizing.
Then, either f = QJζK with ζ : Ω → Rn harmonic in Ω, or the set

ΣQ,f = {x ∈ Ω : f(x) = QJyK, y ∈ Rn}

(relatively closed in Ω) has Hausdorff dimension at most m − 2 and it is locally finite
for m = 2.

2.1.95. Remark. Note that Lemma 2.1.94 is the analogue of Theorem 2.1.82 in the case
one considers just points of multiplicity Q.

Assuming Lemma 2.1.94, it is not difficult to conclude Theorem 2.1.82 by an induc-
tion argument on Q.

Proof. For Q = 1 there is nothing to prove, since Dir-minimizing 1-valued functions are
classic harmonic functions. Suppose now the theorem to be true for every Q∗-valued
functions, with Q∗ < Q.

If f = QJζK with ζ harmonic, then Σf = ∅ and the theorem is proved. If not, we
first consider ΣQ,f ⊂ Σf that, by Lemma 2.1.94, is a closed subset of Ω with Hausdorff
dimension at most m− 2, at most countable if m = 2.

Then, we also consider the open set

Ω′ := Ω\ΣQ,f .

Since f is continuous, we can find countable open balls Bk such that Ω′ = ∪kBk and
f|Bk

can be decomposed as the sum of two multiple-valued Dir-minimizing functions

f|Bk
= Jfk,Q1K + Jfk,Q2K

with Q1 < Q, Q2 < Q and

supp (fk,Q1(x)) ∩ supp (fk,Q2(x)) = ∅ for every x ∈ Bk. (2.1.53)

From (2.1.53) we have that Σf ∩Bk = Σfk,Q1 ∪Σfk,Q2
. Note further that fk,Q1 and fk,Q2

are Dir-minimizing and, by inductive hypothesis, Σfk,Q1
and Σfk,Q2

are closed subsets of
Bk with Hausdorff dimension at most m− 2. We conclude that

Σf = ΣQ,f ∪
⋃
k∈N

(
Σfk,Q1

∪ Σfk,Q2

)
has Hausdorff dimension at most m− 2 and it is at most countable if m = 2.

2.1.96. Remark. As a result, by the simple induction argument shown above, we man-
aged to reduce the whole proof of Theorem 2.1.82 to its analogous verison for highest
multiplicity points only.
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The need of centering

In this final part we are going to prove Lemma 2.1.94 in the simplified planar case (for
the general case m ≥ 3 we refer to [42, Section 3.6.2], even if the main ideas of blow-up
and dimension reduction arguments are the same as in the planar case). As we have
already mentioned, one of the main issues in the blow-up analysis of the singularities is
the persistence of such singularities in the limiting function. Even if Almgren’s frequency
function guarantees nontrivial blow-ups, this still does not ensure the singularity does
not vanish in the limiting object. Consider the following complex variety:

Ξ :=
{
(z, w) ∈ C2 :

(
z − w2

)2
= w2021

}
⊂ C2. (2.1.54)

It is simple to see that Ξ is the graph of the 2-valued function f given by

w
f7→
∑

η : η2=w

Jw2 + η2021K ∈ A2(C) ≃ A2

(
R2
)
.

By Theorem 2.1.74 the function f is Dir-minimizing in any compact set of R2 and by
direct computation it is easy to verify that the rescaled functions fρ in (2.1.52) converge
uniformly to a regular 2-valued function. This shows regularity of the limiting blow-up
even if the origin was a singular point for f , hence excluding the possibility to estimate
the size of the singular set of f by means of its tangent functions. In other words, Ξ is
just an “almost indistinguishable perturbation” of the (smooth) current 2J{z = w2}K,
see Figure 2.3.

Figure 2.3

The solution to such a problem is to perform a sort of “change of coordinates”,
averaging out the regular first expansion of the blow-up, on top of which the singular
branching behavior happens. In particular, in the previous example the regular part was
exactly the smooth complex curve {z = w2}, while the singular branching is due to the
determinations of the square root of z2021.

Hence, it becomes clear why one should look for parametrizations of Ξ as a multiple-
valued function defined on {z = w2}, so that the singular map to be considered reduces
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to

w 7→
∑

η : η2=w

Jη2021K ∈ A2

(
R2
)
.

The blow-up of such map is the map itself, and the singular point 0 persists in the limit.
The regular surface {z = w2} is called center manifold by Almgren, because it be-

haves like (and in this case it is exactly) the average of the sheets of the current in
a suitable system of coordinates. In general, the determination of the center manifold
is not as immediate as in this linearized problem of Dir-minimizing functions. For the
nonlinear case of area-minimizing currents the construction of the center manifold and
the parametrization of the current on its normal bundle actually represent one of the
main difficulties in the analysis of singularities25.

We now give just a glimpse of how to deal with the case of Dir-minimizing functions,
stating two lemmas (see [42, Section 3.6.1] for a proof) that will allow to conclude the
proof of (the planar case of) Lemma 2.1.94 (and so, Theorem 2.1.82).

In order to state the first lemma, we introduce the function η : AQ (Rn) → Rn

mapping each measure T =
∑

iJPiK to its center of mass,

η(T ) :=

∑
i Pi

Q
.

Lemma 2.1.97. Let f : Ω → AQ (Rn) be Dir-minimizing. Then,

i) the function η ◦ f : Ω → Rn is harmonic,

ii) for every ζ : Ω → Rn harmonic, g :=
∑

iJfi + ζK is Dir-minimizing.

2.1.98. Remark. Note that, in particular, we have that

g(x) =
∑
i

Jfi(x)− η ◦ f(x)K

is still Dir-minimizing. The proof is basically an integration by parts computation.

2.1.99. Remark. Note that

Σg = Σf

but now ΣQ,g = {x : g(x) = QJ0K}, telling us that we managed to reduce Lemma
2.1.94 to the case where all points of multiplicity Q are of the form QJ0K. In this
situation, the collapse to one single sheet in the blow-up analysis means that this collapse
should happen at 0, which is forbidden by the estimates on the frequency function.
Hence, this “subtracting the average”-procedure tackles the problem of very high-order
perturbations.

25In Almgren’s theory for the nonlinear problem the construction of the center manifold takes almost
three quarters of his Big Regularity Paper [6]. De Lellis and Spadaro [42, 44, 43, 45, 46] managed to
reduce the whole argument, but still takes a fair half of the whole work.
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The second lemma we need is a technical lemma on cylindrical blow-ups of homoge-
neous functions.

Lemma 2.1.100. Let g : B1 → AQ (Rn) be an α-homogeneous Dir-minimizing function
with

∫
B1
|Dg|2> 0 and set β := Iz,g(0). Suppose also that g(z) = QJ0K for z = e1/2.

Then, the tangent functions h to g at z are β-homogeneous with Dir (h,B1) = 1 and
satisfy:

i) h (se1) = QJ0K for every s ∈ R,

ii) h (x1, x2, . . . , xm) = ĥ (x2, . . . , xm), where ĥ : Rm−1 → AQ (Rn) is Dir-minimizing
on any bounded open subset of Rm−1.

We can finally prove Lemma 2.1.94, concluding the proof of Theorem 2.1.82 in the
case m = 2.

Proof. Note that, as we remarked above, by Lemma 2.1.97 it is sufficient to consider a
Dir-minimizing function f such that η ◦ f ≡ 0 so that,

ΣQ,f = {x : f(x) = QJ0K}.

We prove that ΣQ,f consists of isolated points, except for the case where all sheets
collapse. Without loss of generality, let 0 ∈ ΣQ,f and assume that f ̸= QJ0K in a
neighborhood of 0.

Suppose by contradiction that there exist a sequence xk → 0 such that f(xk) = QJ0K.
By Proposition 2.1.92, the blow-ups f|xk| converge uniformly, up to a subsequence, to
some homogeneous Dir-minimizing function g, with∫

B1

|Dg|2= 1 and η ◦ g ≡ 0.

Since f(xk) are Q-multiplicity points, we also deduce that there exists w in the unit circle
S1 such that g(w) = QJ0K. Up to a rotation, we can assume that w = e1. Considering
the blow-up of g in the point e1/2, by Lemma 2.1.100, we get a new tangent function
h with the property that h(0, x2) = ĥ(x2) for some function ĥ : R → AQ which is

Dir-minimizing on every interval, η ◦ ĥ ≡ 0 and ĥ(0) = QJ0K. Moreover, since∫
B1

|Dh|2= 1,

then ∫
I

|Dĥ|2> 0 for I = [−1, 1], (2.1.55)

which is a contradiction. Indeed, by means of a comparison argument, one can prove
that every Dir-minimizing 1-dimensional function ĥ is an affine function of the form

ĥ(x) =
∑
i

JLi(x)K
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with the property that either Li(x) ̸= Lj(x) for every x or Li(x) = Lj(x) for every x.

Since ĥ(0) = QJ0K, we would conclude that ĥ = QJLK for some linear L. On the other
hand, by η ◦ ĥ ≡ 0 we would conclude L = 0, contradicting (2.1.55).

We conclude that if x ∈ ΣQ,f then either x is isolated, or U ⊂ ΣQ,f for some
neighborhood U of x. Since by assumption Ω is connected we obtain that either ΣQ,f

consists of isolated points, or ΣQ,f = Ω, concluding the proof.

2.1.101. Remark. The proof of Lemma 2.1.94 is a very standard motiv in geometric
measure theory: one fixes a singular point, by contradiction the singular set is assumed
to be “too large” (like in this case where we assumed accumulation of other singular
points) and then by blow-up procedure one derives a contradiction.

In [42, Chapter 5], the authors improved Theorem 2.1.82 proving the following re-
finement in the planar case. One of the most important tools is the uniqueness of the
tangent function to a Dir-minimizer. Thanks to this, the authors succeeded in devel-
oping a better description of the behavior of a Dir-minimizing function around singular
points.

Theorem 2.1.102. Let f be Dir-minimizing and m = 2. Then, the singular set Σf of
f consists of isolated points.

About more recent studies of fine properties of the singular set of Dir-minimizing
function, it is worth mentioning the result in [40]. The main result proved by the
authors is that if f is a Dir-minimizing function, then Σf is countably (m−2)-rectifiable
(and hence Hm−2 σ-finite).

Hints to the nonlinear case

So far, we showed the analogous of Almgren’s partial regularity theorem, Theorem 2.1.2,
in the very special case of parametrizations minimizing the (generalized) Dirichlet energy,
which correspond to the linearized version of the whole problem. Unfortunately (or,
depending on the point of view, luckily), the full proof of Almgren’s partial regularity
theorem for area-minimizing currents in higher codimension is way longer.

In fact, the analytic and geometric issues of the linear case can be simplistically
summarized as follows:

a) The problem of dealing with multiple-valued functions,

b) The problem of getting trivial blow-ups due to a possible infinite order of contact,

c) The need of a centering to ensure persistence of the singularity in the limit.

In the linear case, everything is very clean and the theory is fairly easy to understand.
Nevertheless, many technical and convoluted difficulties need to be tackled in exporting
all the aforementioned techniques to the general nonlinear problem, see [43, 45, 46].

The first major difficulty is that it is not known any a priori estimate telling whether
the area-minimizing current is a graph of a suitable function in higher codimension.
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Hence, a whole theory of approximation needs to be developed to pass from the graphical
case to the general one.

2.1.103. Remark. At this point, differently from the linear case, the average of the differ-
ent sheets of a current does not solve in general any given partial differential equation,
thus not allowing any simple translation or reparametrization argument.

As in the linear case, the proof of Theorem 2.1.2 is done by contradiction, where
the contradiction assumption is the following: there exist numbers m ≥ 2, n ≥ 1, α > 0
and26 an area-minimizing m-dimensional integer rectifiable current T in Rm+n such that

Hm−2+α(Sing(T )) > 0.

The aim of the proof is now to show that there exist suitable points of Sing(T ) where
we can perform the blow-up analysis in the same spirit of the linear case.

This process consists of several different steps: we list here the most important ones
in the proof of Theorem 2.1.2, following the neat description given by Spadaro in [100].

1. Find a point x0 ∈ Sing(T ) and a sequence of radii (rk)k with rk → 0 such that:

• The currents Tx0,rk = (ιx0,rk)∗T converge to a flat tangent cone,

• Hm−2+α (Sing(Tx0,rk) ∩B1) > η > 0 for some η > 0 and for every k ∈ N.

Note that both conclusions hold for suitable subsequences, which in principle may
not coincide. What we need to prove is that we can select a point and a subsequence
satisfying both.

2. Construction of the center manifold M and of a normal Lipschitz approximation
F : M → AQ(U), see [45, Definition 2.3], where U is a (kind of) tubular neigh-
borhood of M.

3. The center manifold that one constructs in step 2 can only be used in general for
a finite number of radii rk of step 1. The reason is that, in general, its degree of
approximation of the average of the area-minimizing currents T is under control
only up to a certain distance from the singular point under consideration. This
leads to the definition of the sets where the approximation works, called intervals
of flattening, and to the construction of an entire sequence of center manifolds
which will be used in the blow-up analysis.

4. Next, one has to deal with the problem of the infinite order of contact and this
is done in two substeps. In the first substep, an almost monotonicity formula
is derived for a slight variation of Almgren’s frequency function, deducing that
the order of contact remains finite within each center manifold of the sequence

26Note that the hypothesis m ≥ 2 is justified because, for m = 1, an area-minimizing current is locally
the union of finitely many nonintersecting open segments.
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described in step 3. In the second substep, one needs to compare different center
manifolds and to show that the order of contact still remains finite. This is done by
exploiting a deep consequence of the construction in step 3, which is called splitting
before tilting phenomenon27, where the terminology was borrowed by [91].

5. With all this hard analysis at disposal, one can finally pass to the limit and conclude
the convergence of the rescaling of the normal part of F to the graph of a Dir-
minimizing Q-valued function u.

6. In conclusion, one can use a delicate capacitary argument leading to the persistence
of the singularities to show that the function u in step 5 must have a singular set
with positive Hm−2+α-measure, thus contradicting the partial regularity estimate
for Q-valued Dir-minimizing functions in Theorem 2.1.82.

Future research directions

2.1.104. Remark. One could hope to be able to further investigate if Almgren’s partial
regularity theorem (Theorem 2.1.2) can be improved (form ≥ 3) to derive fine properties
of the interior singular set of any area-minimizing integral m-dimensional current in
Rm+n, above all if it is m−2-countably rectifiable and with locally finite Hm−2-measure.
Moreover, in the process of digging deeper in the above analysis of the singular set, this
study would possibly shed light on at least some partial cases of Open problem 1.

At the moment, the following questions are still open:

Open problem 2. Consider an area-minimizing integral current T of dimension m in
Rm+n. Is Sing(T ) m− 2-rectifiable?

The fine structure of the singular set (hence, a fortiori, Open problem 2) shares many
deep connections with the uniqueness of the tangent cone. In particular, Open problem
2 seems to be relying on the following simpler tangent cone uniqueness question:

Open problem 3. Consider an area-minimizing integral current T of dimension m in
Rm+n and let p ∈ Sing(T ) be a point where one tangent cone is flat. Is the latter the
unique tangent cone to T at p?

By the results obtained in the forthcoming work [41]28, the authors suggest that a
positive answer to the previous question, together with the additional information of a
polynomial convergence rate, would imply m− 2-rectifiability of Sing(T ).

About the possibilities to go beyond Almgren’s theory it is worth mentioning the case
of currents equipped with special calibrated structures. Specific instances are complex

27Which is, roughly speaking, a multivalued version of what is known as tilt-lemma, that is an estimate
of the L2-deviation from a tangent plane by means of the excess: the analogous of a reverse Poincaré
inequality for elliptic partial differential equations.

28Where the authors study, among other things, how to subdivide singularities based on the value of
the frequency function.
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integral currents of arbitrary dimension and codimension in Cd, where the regularity
analysis of [65] fully characterized them as integrations over a pure k-dimensional alge-
braic variety (known as “holomorphic k-chains”). Another more recent example is the
one of special Lagrangian 3-d cones in R6, proved in [11] to be smooth except for a finite
number of half-lines, emanating from the vertex of the cone; a priori, Almgren’s result
ensures that area-minimizing integer rectifiable 3-currents are smooth outside of a set of
Hausdorff dimension 1 that, in the case of a cone, roughly translates into having radial
lines of singularities, possibly accumulating onto each other. Strongly relying on the
special Lagrangian calibrated geometry, Bellettini and Rivière established in [11] that
there can only be a finite number of such lines.

Open problem 4. Is it possible to derive refined properties of Sing(T ) in Almgren’s
theorem (Theorem 2.1.2) when special structures are assumed on calibrated currents?

2.2 Regularity theory for optimal transport paths

Once an existence theory has been developed for the optimal branched transport prob-
lem, the natural following question is to ask whether such optimal transport paths with
finite costs enjoy finer regularity properties. In general, one cannot hope for smooth min-
imizers, as it happens (for some dimensions) in the regularity theory for area-minimizing
currents, because of the intrinsic nature of the networks. Nevertheless, an interior regu-
larity theory has been developed starting from the work by Xia [111], where an optimal
transport path of finite cost is proved to be made by a finite union of line segments near
each interior point of the path.

The main strategy to prove such a statement deeply relies on ideas borrowed from
the theory of generalized area-minimizing surfaces. The key step is a blow-up procedure,
studying tangent cones of minimizers at an arbitrary point; the main tools to perform
such a blow-up analysis are the monotonicity formulae, as already widely discussed in
Section 2.1. In analogy with area-minimizing currents, in optimal branched transport
one should expect a monotonicity formula given by a suitable ratio involving the specific
“cost” of this Plateau-type problem: the α-mass. Indeed, this is the case as shown in
the following proposition.

Proposition 2.2.1. [111, Corollary 3.1] Let T = JE, τ, θK be a transport path such
that T ∈ OTP(∂T ). Then for any x ∈ supp(T ) \ supp(∂T ) and any 0 < ρ <
dist(x, supp(∂T )), the quantity ∫

Bρ(x)
|θ|αdH1 E

ρ
(2.2.1)

is a nondecreasing function of ρ.

2.2.2. Remark. As it always happens for monotonicity formulae, once the monotone ratio
has been “discovered”, then the proof relies on some straightforward (and usually not
so enlightening) computations.
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As soon as a monotonicity formula for the α-mass is available, one can start the
usual blow-up procedure studying the existence of tangent cones. Given the blow-up
sequence T0,r as in Definition 2.1.8, we need to prove that for rk → 0 as k → ∞ we have
the following uniform bound:

sup
k

(M(T0,rk) +M(∂T0,rk)) <∞. (2.2.2)

Then, by Proposition 1.2.13, T0,r converges (up to subsequences) in the sense of currents
to the tangent cone T .

2.2.3. Remark. Note the analogy with (for instance) Lemma 2.1.93, where one would
like to prove uniform bounds to gain a suitable notion of (sequential) compactness and
deduce convergence of the blow-ups.

Notice that by Proposition 2.2.1 we have

sup
k

Mα(T0,rk) <∞.

Moreover, since for every k we have T0,rk ∈ OTP(∂T0,rk), we conclude that

sup
k

M(T0,rk) ≤ sup
k

Mα(T0,rk) <∞.

One can also prove supk Mα(∂T0,rk) < ∞. The main idea of this proof is done by
slicing, deriving a formula of the following type for the α-mass of a current S (see, [30,
Proposition 2.9]): ∫

Mα(Sy) ≤ CMα(S).

2.2.4. Remark. In the same spirit of point i) of Proposition 2.1.92, the fact that tangent
cones are proved to be minimizers is of fundamental importance. Hence, also in the
optimal branched transport problem one would like to conclude that the limiting object
is a minimizer for the α-mass, which is a priori not granted at all. Moreover, in analogy
with point ii) of Proposition 2.1.92, one wants to understand if the limiting object has
some extra symmetries or finer properties: we would like to say that such a cone cannot
have infinitely many segments spreading out of the object.

More formally, we would like to prove the following lemma.

Lemma 2.2.5. Let T = JE, τ, θK be a transport path such that T ∈ OTP(∂T ). Then
for any x ∈ supp(T ) \ supp(∂T ) there exists a tangent cone Cp of T at p. Moreover, Cp

is again a minimizer for the α-mass.

2.2.6. Remark. To prove Lemma 2.2.5, which is a key step in the regularity theory for
optimal branched transport, the author in [111, Proposition 3.3] introduces the so-called
“Whitney flat norm”. Roughly speaking, the Whitney flat norm mimicks the definition
of the flat norm F as in Definition 1.2.29, substituting the mass with the α-mass. In
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the proof [111, page 290, line 28] the author hints at the possibility to generalize the
compactness theorem for area-minimizing currents [94, Theorem 34.5] to the case of
equibounded α-masses and α-masses of the boundaries. This argument seems rather
convoluted and would deserve some care in the delicate passages. We remark here that,
in fact, Lemma 2.2.5 is a straightforward application of stability of minimizers, which is
valid for any α ∈ (0, 1), see Theorem 1.3.33 and [29].

More in general, we can conclude the following interior regularity theorem for tangent
cones as a consequence of the stability property of minimizers. This is the fundamental
step in order to prove Theorem 2.2.10.

Theorem 2.2.7. Let T = JE, τ, θK be a transport path such that T ∈ OTP(∂T ). Then
for any p ∈ supp(T ) \ supp(∂T ) there exists a tangent cone Cp of T at p which is a
minimizer for the α-mass. Moreover we have that

Cp B1 =
k∑

i=1

miJeiK, (2.2.3)

where

a) k ≤ C = C(α, d),

b) ei are segments of the form pi, 0 for some pi in the unit d− 1-sphere Sd−1.

c) mi are real-valued multiplicities satisfying

k∑
i=1

mi = 0 and
k∑

i=1

mi

m1−α
i

pi = 0. (2.2.4)

2.2.8. Remark. Theorem 2.2.7 ensures that the tangent cone is a finite (real) polyhedral
current where the number k of (nonoverlapping) segments is uniformly bounded above
by a geometric constant depending only on α and the dimension d. Moreover, note
that since the point p has been chosen in supp(T ) \ supp(∂T ), then

∑k
i=1mi = 0 follows

immediately. Property
∑k

i=1
mi

m1−α
i

pi = 0 is a “balancing equation” coming, instead, from

a first order condition of the minimal cone Cp, relating the mi’s and the vectors pi’s.

Proof. The existence of a tangent cone Cp comes from Lemma 2.2.5. Cp is optimal by
Theorem 1.3.33 (or, more generally, Theorem 1.3.35) and so, by a standard computation
in analogy with Proposition 1.3.7 one can show that the minimal angle between two
vectors ei and ej is a strictly positive quantity depending only on α (and the dimension
d). This uniform lower bound forces the number of segments ei’s to be finite. Hence, Cp

must be of the form (2.2.3). By optimality of Cp, the balancing conditions (2.2.4) follow
immediately, concluding the proof.
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2.2.9. Remark. More precisely, to be able to conclude, one would need to rule out the
possibility that the vertices are not accumulating in the interior, which would require
some other results. For the sake of the exposition, we assume this technical passage to
be true.

Finally we can state the following interior regularity theorem for optimal transport
paths as a corollary of Theorem 2.2.7.

Theorem 2.2.10 (Interior regularity). Suppose T ∈ OTP(∂T ) is an optimal transport
path such that Mα(T ) < ∞. For any point p ∈ supp(T ) \ supp(∂T ) there is an open
neighborhood U of p such that T U is a polyhedral current.



Chapter 3

Uniqueness results

The main goal of Chapter 3 is to present the uniqueness theory for the Plateau’s prob-
lem and for the optimal branched transport problem. After a brief discussion about
the main uniqueness and nonuniqueness theorems for solutions of these two geometric
variational problems, we will pass to the most original contributions of this thesis: in
Section 3.1 we exploit the regularity theory in higher codimension of Theorem 2.1.2 to
prove that, generically (in the sense of Baire categories), every integral (m− 1)-current
without boundary spans a unique minimizer in Rm+n. In Section 3.2 we prove the generic
uniqueness of minimizers of the optimal branched transport problem.

3.1 Generic uniqueness of minimal surfaces

Arguably, the very innocent question of “how many minimal surfaces can be spanned
by a given closed Jordan curve” turns out to be one of the most challenging questions
that can be raised in connection with the Plateau’s problem. Indeed, the answer to this
question is still not known in full generality and goes back at least to the first decades of
the twentieth century, to the works by Radó, Courant, Tromba, Nitsche, Tomi and many
others, see [53] for a beautiful survey. Indeed, the problem of uniqueness still deserves
some attention even considering the more modest question of asking how many minimal
surfaces of the type of the disk 1 can be spanned in a given closed Jordan curve Γ. Many
examples of minimal surfaces have been developed in the literature that warn us not to
expect uniqueness even for disk-type solutions of the Plateau’s problem. Hence, we may
ask whether additional geometric conditions for Γ are known to ensure this uniqueness.
We mention here two pioneering uniqueness results.

Theorem 3.1.1 (Radó’s Theorem). [87] If Γ has a one-to-one parallel projection onto
a planar convex curve γ, then Γ bounds at most one disk-type minimal surface.

Theorem 3.1.2 (Nitsche’s Theorem). [83] If Γ is a real analytic, regular Jordan curve
with a total curvature less than or equal to 4π, then Γ bounds only one disk-type minimal

1For a precise definition we refer the reader to [53, Section 4.2, Definition 1].
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surface. Moreover, the solution can be continued analytically across Γ as a minimal
surface2.

To understand why the uniqueness question in the Plateau’s problem is so com-
plicated one should consider the following observation. Remarkably enough, Courant
outlines in his famous book “Dirichlet principle, conformal mappings and minimal sur-
faces”, see [32], an argument showing that there might exist a rectifiable Jordan curve
Γ which bounds uncountably many minimal surfaces (of the type of the disk). In fact,
Courant did not prove a fundamental step of his construction called strong bridge theo-
rem, which roughly tells about the possibility to connect two Jordan curves by a bridge
consisting of two arcs, giving rise to many disk-type minimal surfaces, see Figures 3.1
and 3.2. The validity of his example strictly depends on the validity of this result, which
was rigorously proved by White in fairly general and strong versions, see [106, 107]. More
recently, Morgan [77] gave an example of a smooth curve in R4 that bounds a whole
continuum of (unoriented) area-minimizing analytic manifolds. The author proved the
theorem relying on a generalization of the theory of currents called theory of currents
modulo p, see [57] for a more detailed discussion. Hence, from these examples it is clear
that uniqueness is highly unexpected in Plateau-type problems.

Figure 3.1: Application of Courant’s bridge theorem. (Adapted from [53]).

Consequently, other approaches have been developed to study uniqueness questions.
Arguably, the most fruitful was by means of Baire categories. Indeed we state here one
of the first satisfactory partial answers to the finitness question by Böhme and Tromba,
see [14].

2The unique solution in Nitsche’s theorem is not just immersed: it is also embedded.
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Figure 3.2: Construction of a curve Γ bounding uncountably minimal surfaces. (Adapted
from [53]).

Theorem 3.1.3. [14] Generically 3, the number of disk-type solutions of the Plateau’s
problem is finite.

3.1.4. Remark. Despite the generic finiteness result by Böhme and Tromba, the question
whether a (reasonably smooth) curve Γ bounds only finitely many disk-type solutions
of the Plateau’s problem is widely open.

More recently, Morgan [78] proved in the context of geometric measure theory that
almost every curve (with respect to a suitable geometrically meaningful measure) in R3

bounds a unique area-minimizing surface. More formally, Morgan considered the space
of parametrizations

C := {f : f ∈ C2,α(S1,R3)},

where S1 is the unit circle and α < 1 equipped with the C2-norm. A measure on the
space of curves C is constructed by defining a countably infinite product of standardized
Gaussian measures in R3 measuring the Fourier coefficients of the embeddings in C .
Almost every such formal series converges uniformly to an element of C and the resulting
measure µ has the fundamental geometric property that open balls in C with respect to
the C2-norm are measurable and with positive measure4. Morgan’s result can be stated
as follows:

Theorem 3.1.5 (Morgan’s generic uniqueness). [78] µ-almost every b ∈ C bounds a
unique area-minimizing surface.

We highlight two key passages of the proof of Theorem 3.1.5. The first result is a
unique continuation theorem assuring that two area-minimizing surfaces with the same
boundary which have the same tangent space along a stretch of positive length of the
boundary are indeed the same surface. By the interior regularity (in fact, analyticity)

3We remark that by generically the authors mean that there exists an open dense subset of boundaries
for which there exists only a finite number of disk-type solutions of the Plateau’s problem.

4Due to this property Morgan’s result holds in the sense of Baire’s categories as well.



80 3. Uniqueness results

of the surfaces, it is enough to prove this step only locally at a boundary point where
the two surfaces can be parametrized as graphs of functions f, g : R2 → R satisfying
the minimal surface equation; in this setting the problem becomes a straightforward
application of the theory of elliptic partial differential equations.

The second fundamental ingredient is a uniform boundary regularity theorem for
integral currents that allows the author to conclude that if the tangents to two area-
minimizing surfaces with the same boundary are “close together”, then the two surfaces
are “close together”. The author deeply relies on a result by Allard telling that if an
oriented submanifold Γ is contained in the boundary of a uniformly convex set, then
every boundary point p ∈ Γ is regular and has density 1/2. By regular we mean that
the support of the current is a regular submanifold with boundary in a neighborhood of
the boundary point5.

The main reason why Morgan’s result (and his later generalizations, see [79, 80]) can
be improved is that he strongly relies on Allard’s assumptions in [2]. Indeed, what was
missing was a boundary regularity theory for higher codimension integral currents with-
out any assumption on the multiplicity of the boundary. Indeed, before the fundamental
work by De Lellis, De Philippis, Hirsch and Massaccesi [39] one could not even exclude in
general that the set of regular boundary points was empty, see [6, Section 5.23] and [39,
Corollary 1.10]. In [39] the authors prove the first general boundary regularity theorem
without any restrictions on the codimension and on the geometry of Γ, showing that the
set of regular boundary points is dense. After [39], it is reasonable to consider further
studies than the ones initiated by Morgan in [78, 79, 80].

3.1.1 Generic uniqueness of higher codimension area-minimizing
currents

In the remaining part we will prove an original result which is based on a joint work with
A. Marchese, see [23]. We prove that generically (in the sense of Baire categories) and
with respect to the flat norm, every integral (m − 1)-current without boundary spans
a unique minimizer in Rm+n. The techiniques we adopt have strong analogies with the
(more complicated) proof of the generic uniqueness for the optimal branched transport
problem we will present in the next section.

Given K ⊂ Rm+n a compact set we denote

E(B) := inf{M(T ) |T ∈ Im(K) : ∂T = B}.

Moreover, we denote the set of solutions to the generalized Plateau’s problem with
boundary B as

AMC(B) := {T ∈ Im(K) : ∂T = B and M(T ) = E(B)}.
5In fact, [78, 79] and their later generalization to any dimension and codimension [80] all rely on a

more general theorem developed by Allard, see [2], telling that (among other things) if p ∈ Γ is a point
where the density Θ(T, p) is 1

2 (in any dimension and codimension), then p is a regular boundary point.
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We denote the set of (m− 1)-boundaries by

Bm−1(K) := {B ∈ Dm−1(K) : ∂B = 0}.

Fix an arbitrary C > 0 and define

AC := {B ∈ Bm−1(K) : M(B) ≤ C and M(T ) ≤ C for every T ∈ AMC(B)}. (3.1.1)

Lemma 3.1.6. The space (AC , d ♭) is a nontrivial complete metric space, where d ♭ is
the distance induced by the flat norm FK.

We prove that AC is FK-closed, then completeness follows from FK-compactness of
integral (m− 1)-currents (without boundary) with support in K and mass bounded by
C, see Theorem 1.2.24.

Proof. Let (Bj)j∈N be a sequence of elements of AC and let B be such that for j → ∞ we
have FK(Bj −B) → 0. By the lower semicontinuity of the mass (with respect to the flat
convergence), we haveM(B) ≤ C. For any j ∈ N, let Tj ∈ AMC(Bj). Note we also have
M(Tj) ≤ C. By Theorem 1.2.24, there exists T ∈ Im(K) such that, up to (nonrelabeled)
subsequences, FK(Tj − T ) → 0. By the continuity of the boundary operator we have
∂T = B and by the lower semicontinuity of the mass, we have M(T ) ≤ C and hence
B ∈ AC .

The main result we prove can be stated as follows.

Theorem 3.1.7 (Generic uniqueness). The set of boundaries B ∈ AC, for which
AMC(B) is a singleton, is residual 6.

Consider the following subset of AC , which denotes the set of boundaries admitting
nonunique minimizers:

NUC := {B ∈ AC : there exist T 1, T 2 ∈ AMC(B) such that T 1 ̸= T 2}.

Lemma 3.1.8. Assume that the set AC \NUC is FK-dense in AC. Then it is residual.

Proof. For m ∈ N \ {0}, consider the sets

NUm
C := {B ∈ AC : there exist {T 1, T 2} ⊂ AMC(B) with FK(T

2 − T 1) ≥ m−1}.

Since NUm
C ⊂ NUC , then (AC \ NUm

C ) ⊃ (AC \ NUC) and hence, by assumption,
AC \ NUm

C is FK-dense in AC for every m. Therefore NUm
C has empty interior in AC

for every m. By proving that NUm
C is closed for every m we conclude.

Consider a sequence (Bj)j∈N of elements of NUm
C and let B ∈ AC be such that

FK(Bj −B) → 0. For every j ∈ N, take

{T 1
j , T

2
j } ⊂ AMC(Bj) with FK(T

2
j − T 1

j ) ≥ 1/m.

As in the proof of Lemma 3.1.6, we deduce that there exist T 1, T 2 ∈ Im(K), such
that ∂T 1 = ∂T 2 = B and, up to (nonrelabeled) subsequences, FK(T

1
j − T 1) → 0,

FK(T
2
j − T 2) → 0 as j → ∞. Clearly FK(T

2 − T 1) ≥ 1/m. By Theorem 1.2.24 and
Theorem 1.2.27, we have {T1, T2} ⊂ AMC(B), hence B ∈ NUm

C .

6Recall that a set is residual if it contains a countable intersection of open dense subsets.
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To prove Theorem 3.1.7 we are left to prove that the set of boundaries B ∈ AC for
which AMC(B) is a singleton is dense in the metric space (AC , d ♭).

The main idea is to consider the following argument: we first reduce to a polyhedral
boundary P by suitably applying Theorem 1.2.31, see Lemma 3.1.9. Then we fix an area-
minimizing current S with ∂S = P and, by Theorem 2.1.2, we can find x0 ∈ Reg(S).
Starting from such interior regular point, a simple perturbation argument proves the
density of boundaries with unique minimizer.

Lemma 3.1.9. For any B ∈ AC and ε > 0 there exist a δ > 0 and a polyhedral boundary
P ∈ AC−δ ∩ Pm−1(K) such that

FK(B − P ) ≤ ε.

Proof. Without loss of generality and up to rescaling, we can assume C = 1 and write A
instead of AC . Consider B ∈ A and T ∈ AMC(B). Now define the following rescalings

Tε := (1− ε/2)T

with Bε := ∂Tε = (1− ε/2)B and note Tε ∈ AMC(Bε) with

M(Tε) ≤ 1− ε/2 and M(Bε) ≤ 1− ε/2. (3.1.2)

Since we have M(B −Bε) ≤ ε/2 then we also have

FK(B −Bε) ≤ ε/2. (3.1.3)

By Theorem 1.2.31 there exists a polyhedral m-current TP ∈ Pm(K) such that, denoting
P := ∂TP , we have

FK(TP − Tε) ≤ ε/4, M(TP ) ≤ M(Tε) + ε/4 and M(P ) ≤ M(Bε) + ε/4. (3.1.4)

In particular we get
FK(P −Bε) ≤ ε/4. (3.1.5)

By (3.1.4) and (3.1.2) we get
M(TP ) < 1. (3.1.6)

Combining (3.1.3) and (3.1.5) we get FK(P − B) ≤ ε and by (3.1.4) and (3.1.2) we
conclude that

M(P ) ≤ 1− ε/4 < 1. (3.1.7)

Hence by (3.1.6) and (3.1.7) we have P ∈ A1−δ ∩ Pm−1(K) for some δ > 0.

Now consider an area-minimizing m-current S such that ∂S = P , which exists by
Theorem 1.2.26, and fix x0 ∈ Reg(S).

3.1.10. Remark. Note that by Theorem 2.1.2 and by the fact ∂S ∈ Pm−1(K) we have
Reg(S) ̸= ∅. Indeed P is of the form (1.2.3), hence supp(P ) cannot be dense in supp(S)
since it is made by a finite number of (m− 1)-dimensional simplexes.
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Recall the definition of interior regular point: we say that x0 ∈ supp(S) \ supp(∂S)
is an interior regular point if there is a positive radius r > 0 and a ball Br(x0) ⊂
Rn+m, a smooth embedded submanifold Σ ⊂ Rn+m and a positive integer Q such that
T Br(x0) = QJΣK.

Proof (Theorem 3.1.7). For some radius r such that r < r, define

S ′ := S − S Br(x0) and B′ := ∂S ′.

Note further that by Lemma 3.1.9, for r small enough, B′ ∈ AC . Note that S ′ ∈
AMC(B′), since otherwise we would find S̃ with ∂S̃ = B′ and M(S̃) < M(S ′). This
would lead to the contradiction ∂(S̃ + S Br(x0)) = P but M(S̃ + S Br(x0)) <M(S).
Hence, if we are able to prove that AMC(B′) = {S ′}, then we prove AC \ NUC is
FK-dense in AC .

Suppose there exists S ′′ ∈ AMC(B′) such that S ′ ̸= S ′′. Denote Ŝ := S ′′+S Br(x0).
By the minimality of S one immediately sees that supp(Ŝ) ⊃ supp(S) ∩ Br(x0). By
Theorem 2.1.2 there exists x1 ∈ ∂Br(x0) ∩ Reg(S) ∩ Reg(Ŝ). For a sufficiently small
radius ρ such that ρ < dist(x1, ∂Br), we can write

S Bρ(x1) = Q1JΣ1K Bρ(x1) and Ŝ Bρ(x1) = Q2JΣ2K Bρ(x1).

By the same argument, the tangents to Σ1 and Σ2 coincide on supp(S)∩Br(x0) locally
around x1. By a unique continuation argument for the minimal surface system, see [80,
Lemma 7.2], the two submanifolds Σ1,Σ2 must coincide locally around x1. By Theorem
2.1.2 this equivalence can be extended to the full regular parts of S and Ŝ. This easily
implies the contradiction Ŝ = S.

The initial approximation argument by means of polyhedral currents is motivated
by the following remark.

3.1.11. Remark. Given an integral (m− 1)-current without boundary T ∈ Im−1(Rm+n)
and an area-minimizing m-current S such that T = ∂S, it is not possible to conclude
Reg(T ) ̸= ∅. In other words, it is possible that the interior regularity theorems may be
empty theorems, as the following example shows.

Example 3.1.12. In R2, consider a sequence of positive real numbers (rj)j such that∑
j rj <∞ and a sequence (qj)j that is dense in R2. Consider the balls Brj(qj) and the

2-current defined as

T :=
∑
j∈N

JBrj(qj)K.

Note that

∂T = ∂

(∑
j∈N

JBrj(qj)K

)
=
∑
j∈N

∂JBrj(qj)K
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since the intersection between two circumferences with different centers has H1-measure
equal to zero. Moreover it is easy to check that

M(T ) = π
∑
j

r2j <∞ and M(∂T ) = 2π
∑
j

rj <∞.

Fix x ∈ R2, ε > 0 arbitrary and consider the ball Bε(x). Then there exists qj0 ∈ Bε(x)
such that rj0 < dist(qj0 , ∂Bε(x)). Hence, supp(∂T )∩Bε(x) ̸= ∅, showing that supp(∂T ) =
R2. Since ∂T is integral, by Theorem 1.2.26 there exists an area-minimizing current T1
such that ∂T1 = ∂T but now

Reg(T1) ⊂ supp(T1) \ supp(∂T ) = ∅.

Note further that the interior regularity theorem for area-minimizing currents is still
valid, but it trivializes to an empty theorem since Reg(T1) = ∅. The same argument can
be easily generalized in any dimension.

3.2 Generic uniqueness of optimal transport paths

This section is based on a joint work with A. Marchese and S. Steinbrüchel, see [24].
It is well-known that there are boundaries b such that OTP(b) contains more than

one element of finite α-mass; for instance one can exhibit a nonsymmetric minimizer
T for which ∂T is symmetric, so that the network T ′ symmetric to T is a different
minimizer (see Figure 3.3).

Figure 3.3: The boundary ∂T is symmetric (with respect to the horizontal axis) and
T ∈ OTP(∂T ) is not symmetric, hence the symmetric copy T ′ is a different minimizer.

We prove that for the generic boundary, in the sense of Baire categories, there exists
a unique minimizer of the associated optimal branched transport problem. Slightly
improving upon the main result of [29], see Theorem 1.3.35, we advance on the study of
the well-posedness properties of the optimal branched transport problem, as we establish
the first result on the generic uniqueness of minimizers and in full generality, namely in
every dimension d and for every exponent α ∈ (0, 1). Prior to our work, we are aware of
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only one elementary result on the uniqueness of minimizing networks. It appeared in the
original paper by Gilbert [62] and says that there exists at most one discrete minimum
cost communication network with a given Steiner topology.

Recall we denoted the set of boundaries by

B0(K) := {b ∈ D0(K) : there is an S ∈ D1(K) with ∂S = b} ,

we fixed an arbitrary constant C > 0 and we defined

AC := {b ∈ B0(K) : M(b) ≤ C and Mα(T ) ≤ C for every T ∈ OTP(b)}. (3.2.1)

We metrize AC with the flat norm FK and we observe that the set AC endowed with
the induced distance is a nontrivial complete metric space, see Lemma 3.2.3. Our main
result is the following.

Theorem 3.2.1 (Generic uniqueness of optimal transport paths). The set of boundaries
b ∈ AC, for which OTP(b) is a singleton, is residual.

Several variants and generalizations of the optimal branched transport problem were
proposed and studied by many authors in recent years, see for instance [13, 16, 17, 18,
19, 20, 21, 22, 28, 72, 73, 84]. For the sake of simplicity, we prove the generic uniqueness
of minimizers only for the Eulerian formulation introduced in [110].

Strategy of the proof

Using Theorem 1.3.35, we show that in order to prove Theorem 3.2.1, it suffices to prove
the density of the set of boundaries b ∈ AC for which OTP(b) is a singleton, see Lemma
3.2.4. A similar reduction principle is used in [78, 79, 80] to prove that the generic
(higher dimensional) boundary spans a unique solution to the Plateau’s problem.

The proof of the density result is based on the following perturbation argument.
Firstly, we prove that we can reduce to a finite atomic boundary b whose multiplicities
are integer multiples of a fixed positive number, exploiting the fact that such boundaries
are dense in AC , see Lemma 3.2.5. For these boundaries, we prove that the solutions to
the optimal branched transport problem are multiples of polyhedral integral currents,
see Lemma 3.2.6. Then we improve the uniqueness result of [62] to suit the discrete
optimal branched transport problem, obtaining as a byproduct that for every finite
atomic boundary b as above the set OTP(b) is finite, see Lemma 3.2.11. We deduce
the existence of a set of points {p1, . . . , ph} in the regular part of the support of a fixed
transport path T ∈ OTP(b) with the property that T is the only element in OTP(b)
whose support contains {p1, . . . , ph}, see Lemma 3.2.12.

Next, we aim to “perturb” the boundary b close to the points p1, . . . , ph in order to
obtain boundaries with unique minimizers, keeping in mind the fact that the perturbed
boundaries should not escape from the set AC . More in detail, we define a sequence
(bn)n≥1 ∈ AC of boundaries for the optimal branched transport problem with the prop-
erty that FK(bn − b) → 0 as n → ∞. Moreover, each bn has points of its support (with
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small multiplicity) in proximity of p1, . . . , ph, so that every minimizing transport path
Sn with boundary ∂Sn = bn is forced to have such close-by points in its support. Ex-
ploiting again the stability property of Theorem 1.3.35, we deduce that for every choice
of Sn ∈ OTP(bn) there exists S ∈ OTP(b) such that, up to subsequences, it holds
FK(Sn −S) → 0 and we can infer the Hausdorff convergence of the supports of the Sn’s
to the union of the support of S and the points p1, . . . , ph, see Lemma 3.2.14. Notice
that at this stage we cannot deduce from Lemma 3.2.12 that S = T , since the portion of
Sn which is in proximity of some of the pi’s might vanish in the limit. In order to exclude
this possibility, we perform a fine analysis of the structure of the network Sn around the
points p1, . . . , ph, see Section 3.2.3: this allows us to exclude all possible local topologies
except for two, see (3.2.32), proving that p1, . . . , ph are contained in the support of S (so
that in particular S = T by Lemma 3.2.12) and that OTP(bn) = {Sn}, for n sufficiently
large, see Lemma 3.2.15, which concludes the proof of Theorem 3.2.1.

3.2.2. Remark. It is much easier to prove just density in
⋃

C>0AC of the boundaries
b for which OTP(b) is a singleton. Indeed, it is significantly simpler to perform the
strategy outlined above if one is allowed to choose bn simply satisfying FK(bn − b) → 0
and Mα(Sn) ≤ C, but possibly with M(bn) > C: for instance it suffices to choose the
perturbation bn as in (3.2.15) with k = 1, in which case it is easy to prove that OTP(bn)
is a singleton. Obviously such type of perturbation is not admissible in order to prove
the residuality result of Theorem 3.2.1, since such boundaries bn do not belong to AC .
One of the challenges in our proof is therefore to find suitable perturbations bn of b
which are internal to the set AC and such that for the boundary bn there exists a unique
minimizer of the optimal branched transport problem, for n sufficiently large.

Preliminaries

Through the section K ⊂ Rd denotes a convex compact set. Let AC be the set of
boundaries defined in (3.2.1). Due to the Baire category theorem, the next lemma
ensures that a residual subset of AC is dense.

Lemma 3.2.3. The set AC is FK-closed. In particular (AC , d♭) is a complete metric
space.

Proof. The second part of the statement follows from the first part and from the FK-
compactness of 0-currents with support in K and mass bounded by C, see [57, 4.2.17].

In order to prove that AC is FK closed, let (bj)j∈N be a sequence of elements of AC

and let b be such that FK(bj − b) → 0 as j → ∞. We want to prove that b ∈ AC .
By the lower semicontinuity of the mass (with respect to the flat convergence), we have
M(b) ≤ C. For any j ∈ N, let Tj ∈ OTP(bj). By [27, Proposition 3.6], we have
M(Tj) ≤ C1−αMα(Tj) ≤ C2−α. By the compactness theorem for normal currents, there
exists T ∈ N1(K) such that, up to (nonrelabeled) subsequences FK(Tj−T ) → 0. By the
continuity of the boundary operator we have ∂T = b and by the lower semicontinuity of
the α-mass, see [31], we have Mα(T ) ≤ C and hence b ∈ AC .
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Consider the following subset of AC , which represents the set of boundaries admitting
nonunique minimizers:

NUC := {b ∈ AC : ∃ T 1, T 2 ∈ OTP(b) such that T 1 ̸= T 2}.

Notice that since b ∈ AC then Mα(T 1) = Mα(T 2) ≤ C. We have the following.

Lemma 3.2.4. Assume that the set AC \NUC is FK-dense in AC. Then it is residual.

Proof. For m ∈ N \ {0}, consider the sets

NUm
C := {b ∈ AC : ∃ {T 1, T 2} ⊂ OTP(b) with FK(T

2 − T 1) ≥ m−1}.

Since NUm
C ⊂ NUC , then (AC \ NUm

C ) ⊃ (AC \ NUC) and hence, by assumption,
AC \NUm

C is FK-dense in AC for every m. Therefore NUm
C has empty interior in AC for

every m.
To conclude, it is sufficient to prove that NUm

C is closed for every m. Consider a
sequence (bj)j∈N of elements of NUm

C and let b ∈ AC be such that FK(bj − b) → 0. We
need to prove that b ∈ NUm

C . For every j ∈ N, take

{T 1
j , T

2
j } ⊂ OTP(bj) with FK(T

2
j − T 1

j ) ≥ m−1.

As in the proof of Lemma 3.2.3, we deduce that there exist T 1, T 2 ∈ N1(K), such
that ∂T 1 = ∂T 2 = b and, up to (nonrelabeled) subsequences, FK(T

1
j − T 1) → 0 and

FK(T
2
j − T 2) → 0 as j → ∞. Clearly FK(T

2 − T 1) ≥ m−1. By Theorem 1.3.35, we have
{T1, T2} ⊂ OTP(b), hence b ∈ NUm

C .

Preliminary reductions

Lemma 3.2.5. For any b ∈ AC and ε > 0, there exist δ > 0 and a boundary b′′ ∈ AC−δ

with
FK(b− b′′) < ε and b′′ = ηbI

for some η > 0 and bI ∈ I0(K).

Proof. Without loss of generality and up to rescaling, we can assume C = 1 and write
A instead of AC . Let b ∈ A and T ∈ OTP(b) and define Tε := (1 − ε/4)T . Then
bε := ∂Tε = (1− ε/4)b and Tε ∈ OTP(bε) satisfy

Mα(Tε) ≤ (1− ε/4)α and M(bε) ≤ 1− ε/4. (3.2.2)

Since we also have M(b− bε) ≤ ε/4, we deduce that

FK(b− bε) ≤ ε/4. (3.2.3)

Now apply a polyhedral approximation theorem by combinig [74, Lemma 9] and [25,
Theorem 1.2] to obtain, possibly after rescaling, a current T ′

ε ∈ P1(K), such that, de-
noting b′ε := ∂T ′

ε, we have

Mα(T ′
ε) ≤ Mα(Tε), M(b′ε) ≤ M(bε) and FK(T

′
ε − Tε) ≤ ε/4, (3.2.4)
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and in particular FK(b
′
ε − bε) ≤ ε/4. We can write

T ′
ε =

N∑
i=1

θ′iJσiK

as in (1.2.3). Up to changing the orientation of JσiK, we may assume θ′i > 0 for every i.

Fix η := ε/(16N) and denote θ′′i := η
⌊
θ′i
η

⌋
(where ⌊x⌋ is the largest integer smaller than

or equal to x) so that

0 ≤ θ′i − θ′′i <
ε

16N
for every i ∈ {1, . . . , N}. (3.2.5)

Define

T ′′ :=
N∑
i=1

θ′′i JσiK

and denote b′′ = ∂T ′′. Observe that by (3.2.5) and (3.2.4) we have

Mα(T ′′) ≤ Mα(T ′
ε) ≤ Mα(Tε) < 1. (3.2.6)

For every i ∈ {1, . . . , N}, we denote by xi and yi respectively the first and second
endpoint of the oriented segment σi, so that we can write

b′ε =
N∑
i=1

θ′i(δyi − δxi
)

which we can rewrite as

b′ε =
M∑
j=1

β′
jδzj ,

where all points zj are distinct and

β′
j :=

 ∑
{i:yi=zj}

θ′i −
∑

{i:xi=zj}

θ′i

 .

Analogously, we define

β′′
j :=

 ∑
{i:yi=zj}

θ′′i −
∑

{i:xi=zj}

θ′′i

 ,

so that we can write

b′′ =
M∑
j=1

β′′
j δzj .
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Thus we obtain

M(b′′ − b′ε) =
M∑
j=1

|β′′
j − β′

j|≤

∣∣∣∣∣ ∑
{i:xi=zj}

(θ′′i − θ′i)

∣∣∣∣∣+
∣∣∣∣∣ ∑
{i:yi=zj}

(θ′′i − θ′i)

∣∣∣∣∣ (3.2.5)<
ε

16
+

ε

16
=
ε

8

(3.2.7)

and by (3.2.2) and (3.2.4) we deduce

M(b′′) ≤ M(b′ε) +M(b′′ − b′ε) < 1. (3.2.8)

Combining (3.2.7) with (3.2.3) and (3.2.4), we get FK(b−b′′) < ε. The conclusion follows
denoting bI := η−1b′′ and observing that bI ∈ I0(K) (as the θ′′i are multiples of η) and
that by (3.2.6) and (3.2.8) we have b′′ ∈ A1−δ for some δ > 0.

Lemma 3.2.6. If b ∈ I0(K) and T ∈ N1(K) is in OTP(b) then T ∈ P1(K) ∩ I1(K).

Proof. Combining the good decomposition properties of optimal transport paths, see
Proposition 1.3.30 and their single path property, see Proposition 1.3.31 with the as-
sumption ∂T ∈ P0(K), we deduce that there are finitely many Lipschitz simple paths
γ1, . . . , γN of finite length such that T can be written as a T =

∑N
i=1 aiJγiK, where ai > 0

for every i and JγiK ∈ I1(K) is the current (Im(γi), γ
′
i/|γ′i|, 1). Moreover, again by Propo-

sition 1.3.31, one can assume that Im(γi) ∩ Im(γj) is connected for every i, j, which in
turn implies that T ∈ P1(K). Hence we can write

T :=
N∑
ℓ=1

θℓJσℓK,

where σℓ are non-overlapping oriented segments and θℓ ∈ R. We want to prove that
θℓ ∈ Z, for all ℓ.

Denote
I := {ℓ ∈ {1, . . . , N} : θℓ ∈ R \ Z}

and let T̂ :=
∑

ℓ∈I θℓJσℓK. Assume by contradiction that T̂ ̸= 0. Note that T − T̂ ∈
I1(K) and therefore, since b ∈ I0(K), we have ∂T̂ = b− ∂(T − T̂ ) ∈ I0(K). Hence, for
every point x in the support of ∂T̂ there are at least two distinct segments σℓ1 and σℓ2
having x as an endpoint. This implies that the support of T̂ , and in particular also the
support of T , contains a loop, which contradicts [12, Proposition 7.8]7.

3.2.1 Finiteness of the set of minimizers for integral boundaries

Definition 3.2.7. Let b ∈ I0(K) and let T, T ′ ∈ P1(K) with ∂T = ∂T ′ = b. We say
that T and T ′ have the same topology if there exist two ordered sets, each made of
distinct points, {x1, . . . , xM} and {x′1, . . . , x′M} with the following properties:

7This proposition can be considered as the continuous analogue of Proposition 1.3.4.
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(i) for every p ∈ supp(b) there exists i such that xi = p = x′i;

(ii) denoting σij the segment with first endpoint xi and second endpoint xj and σ
′
ij the

segment with first endpoint x′i and second endpoint x′j, T and T ′ can be written
respectively as

T =
∑
i<j

aijJσijK, T ′ =
∑
i<j

a′ijJσ
′
ijK, for some aij, a

′
ij ∈ R. (3.2.9)

(iii) the representations in (3.2.9), restricted to the nonzero addenda, are of the same
type as (1.2.3). In particular, if aij and akl (respectively a

′
ij and a

′
kl) are nonzero,

then σij and σkl (respectively σ
′
ij and σ′

kl) have disjoint interiors. Moreover, the
number of nonzero addenda in the representation of T (respectively T ′) given in
(3.2.9) coincides with the smallest number N for which T (respectively T ′) can be
written as in (1.2.3).

(iv) aij = 0 if and only if a′ij = 0. In particular, the number N of the previous point is
the same for T and T ′.

One can check that the above conditions define an equivalence relation on the set of
polyhedral currents. We call the topology of a polyhedral current T the corresponding
equivalence class. Notice that the number M depends only on the equivalence class and
for every T the (unordered) set {x1, . . . , xM} is uniquely determined, by property (iii).
The set {x1, . . . , xM} \ supp(b) is called the set of branch points of T and denoted by
BR(T ). By Lemma 3.2.6, for every T ∈ OTP(b) the topology of T and the set BR(T )
are well-defined.

Lemma 3.2.8. Let 0 ̸= b ∈ I0(K) and T ∈ OTP(b). ThenH0(BR(T )) ≤ H0(supp(b))−
2.

Proof. Suppose without loss of generality that H0(BR(T )) > 0. Assume by contra-
diction that the lemma is false and let n be the minimal number such that there exist
b ∈ I0(K) and T ∈ OTP(b) such that

H0(BR(T )) + 2 > n = H0(supp(b)).

Notice that n > 2. Fix p ∈ BR(T ) and let ε > 0 be such that

(Bε(p) \ {p}) ∩ (supp(b) ∪BR(T )) = ∅.

Denote by T1, . . . , Tm the restriction of T to the connected components of supp(T )\Bε(p).
We notice that m ≥ 3. Indeed, if m = 1 we would have the contradiction p ∈ supp(b)
and if m = 2, writing T as in (3.2.9), the only two segments with nonzero coefficient
having p as an endpoint cannot be collinear by property (iii): this contradicts the the
fact that T ∈ OTP(b). Observe that for every i we have that supp(∂Ti)\supp(b) consists
of exactly one point pi, so that

n =
m∑
i=1

(
H0(supp(∂Ti))− 1

)
. (3.2.10)
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By minimality of n and the fact that m ≥ 3, we have

H0(BR(Ti)) ≤ H0(supp(∂Ti))− 2 for all i ∈ {1, . . . ,m}. (3.2.11)

Since m ≥ 3, the combination of (3.2.10) and (3.2.11) leads to a contradiction.

Lemma 3.2.9. Let b ∈ I0(K) and let T, T ′ ∈ P1(K) with ∂T = b = ∂T ′ have the same
topology. Assume moreover that supp(T ) and supp(T ′) do not contain loops. Write
T and T ′ as in (3.2.9) with properties (i)-(iv) and with the same orientation on each
segment. Then aij = a′ij for every i, j.

Proof. By contradiction, let T, T ′ be nonzero currents with the same topology, ∂T = b =
∂T ′, and minimizing the quantity M in Definition 3.2.7 among all pairs for which the
lemma is false. We claim that there exists a point p ∈ supp(b) and (up to reordering)
indexes i, j ∈ {1, . . . ,M} such that

(a) alj = 0 = a′lj for every l ̸= i;

(b) xj = p = x′j and aij ̸= a′ij, with aij, a
′
ij ∈ R \ {0}.

The validity of (a) follows from the absence of loops. On the other hand, if a point
p as in (a) violated (b), one could restrict the currents T and T ′ respectively to the
complementary of σij and σ′

ij, thus contradicting the minimality of M . The validity of
(a) and (b) is a contradiction because the multiplicities aij and a′ij correspond to the
multiplicity of p as point in the support of b.

Lemma 3.2.10. Let b ∈ I0(K) and S, T ∈ OTP(b) with supp(S) = supp(T ). Then
S = T .

Proof. Assume by contradiction S ̸= T . By Lemma 3.2.6, S − T ∈ P1(K) ∩ I1(K) is a
nontrivial current with ∂(S − T ) = 0 and by assumption supp(S − T ) ⊂ supp(S). As in
the proof of Lemma 3.2.6 we deduce that supp(S−T ) contains a loop. In particular, so
does supp(S), which contradicts [12, Proposition 7.8].

Lemma 3.2.11. Let b ∈ I0(K) be a boundary. Then OTP(b) is finite.

Proof. By Lemma 3.2.8 the range of the integer M of Definition 3.2.7 among all T ∈
OTP(b) is finite. In turn this implies that the set of possible topologies of currents
T ∈ OTP(b) is finite. Indeed the topology of a polyhedral current T as in Definition
3.2.7, up to choosing the order of the points {x1, . . . , xM}, is uniquely determined by the
M ×M matrix A := (|sign(aij)|)ij. Hence it is sufficient to prove that if T and T ′ are
in OTP(b) and have the same topology, then T = T ′, and by Lemma 3.2.10 it suffices
to prove that supp(T ) = supp(T ′).

By [12, Proposition 7.8] the support of T and T ′ does not contain loops, hence we
can apply Lemma 3.2.9 and we can assume that T and T ′ can be written as in (3.2.9)
with aij = a′ij for every i, j = 1, . . . ,M . This means that the set of competitors for
the optimal branched transport problem with boundary b and a given topology can
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be reduced to a family of polyhedral currents T ∈ P1(K) whose only unknown is the
position of the points {x1, . . . , xM} \ supp(b). Accordingly, we denote n := H0(supp(b))
and we order the points {x1, . . . , xM} in such a way that BR(T ) = {x1, . . . , xM−n}. The
α-mass of such T is computed as

Mα(T ) =
∑
i<j

|aij|αH1(σij)

and by the previous discussion, since the vector (xM−n+1, . . . , xM) is fixed, this is a
functional of the vector (x1, . . . , xM−n) only, which can be written as

Mα(T ) = F (x1, . . . , xM−n) :=
∑
i<j

|aij|α|xj − xi|= C +
M−n∑
i=1

M∑
j=i+1

|aij|α|xj − xi|, (3.2.12)

where C =
∑M

i=M−n+1

∑
i<j|aij|α|xj − xi|. One can immediately see that F is convex,

being a sum of convex functions. Moreover each term |aij|α|xj − xi| in (3.2.12), as a
function of the variable xj, is strictly convex on a segment [s, t] whenever xi, s and t are
not collinear.

Assume by contradiction that T ̸= T ′ ∈ OTP(b) have the same topology and con-
sider the corresponding sets

BR(T ) = {x1, . . . , xM−n}, BR(T ′) = {x′1, . . . , x′M−n}.

By Lemma 3.2.9 there exists j ∈ {1, . . . ,M − n} such that xj ̸= x′j. As in the proof of
Lemma 3.2.8 we infer that xj is an endpoint of at least three segments in the support of
T which are not collinear. We deduce by the discussion after (3.2.12) that the function
F is strictly convex in the j-th variable. Since F (x1, . . . , xM−n) = F (x′1, . . . , x

′
M−n) we

deduce that there exists a point (y1, . . . , yM−n) with

F (y1, . . . , yM−n) < F (x1, . . . , xM−n). (3.2.13)

Denote

zi :=

{
yi if i ≤M − n

xi otherwise

and let S be the current
S :=

∑
i<j

aijJσ̃ijK, (3.2.14)

where σ̃ij is the segment with first endpoint zi and second endpoint zj. Notice that in
principle it might happen that S does not have the same topology as T and T ′, since
(3.2.14) might fail to have property (iii) of Definition 3.2.7. However we have ∂S = b
and by (3.2.13)

Mα(S) ≤ F (y1, . . . , yM−n) < F (x1, . . . , xM−n) = Mα(T ),

which contradicts the assumption T ∈ OTP(b).
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Lemma 3.2.12. For every boundary b ∈ I0(K) and T ∈ OTP(b), there is a set of
distinct points {p1, . . . , ph} ⊂ supp(T ) \ (BR(T ) ∪ supp(b)) such that

{S ∈ OTP(b) : {p1, . . . , ph} ⊂ supp(S)} = {T} .

Moreover, the pi’s can be chosen so that if pi ∈ supp(T ) ∩ supp(S) for some S ∈
OTP(b), then there exists ρ > 0 such that supp(T ) ∩Bρ(pi) = supp(S) ∩Bρ(pi).

Proof. By Lemma 3.2.11 we have that OTP(b) consists of finitely many polyhedral
currents T 1, . . . , T h and, by Lemma 3.2.10, the symmetric difference supp(T i)△ supp(T j)
is a relatively open set of positive length for every i ̸= j. Up to reordering, we assume
T 1 = T and for every i ∈ {2, . . . , h} we consider the set Ui := supp(T ) \ (supp(T i) ∪
BR(T )). We observe, recalling that BR(T ) is finite by Lemma 3.2.8, that each Ui is
relatively open with positive length. Define the subset

Vi := Ui ∩
(⋃

j ̸=i

BR(T j) ∪
{
p ∈ Ui : supp(T

j) intersects Ui transversally at p
})

and observe that Vi is finite since every T j is polyhedral. Then choose pi ∈ Ui \ Vi.
Clearly pi ∈ supp(T ) \ (BR(T )∪ supp(b)) and pi ̸∈ supp(T i); moreover if pi ∈ supp(T j)
then locally supp(T j) agrees with supp(T ).

3.2.2 Perturbation argument

Construction of the perturbed boundaries

Let us fix a boundary b ∈ I0(K), an integer polyhedral current T ∈ OTP(b), see
Lemma 3.2.6, and points {p1, . . . , ph} as in Lemma 3.2.12. For a fixed k ∈ N \ {0} and
for n = 1, 2, . . . we denote

Tn := T − 1

k

h∑
i=1

T Bn−1(pi) ,

bn := ∂Tn .

(3.2.15)

Observe that by Proposition 1.3.30, the multiplicity of T is bounded from above by
2−1M(b) and moreover, for n sufficiently large, the closed balls Bn−1(pi) are disjoint and
do not intersect supp(b) ∪BR(T ), so that we have

M(bn) = M(b) + k−1

h∑
i=1

M(∂(T Bn−1(pi))) ≤ M(b) + hk−1M(b) (3.2.16)

and

FK(bn − b) ≤ k−1

h∑
i=1

M(T Bn−1(pi)) ≤ h(nk)−1M(b). (3.2.17)
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For every n, we choose Sn ∈ OTP(bn) and we apply Lemma 3.2.6 to the boundaries kbn
to deduce that kSn ∈ P1(K) ∩ I1(K). By (3.2.15) we have

Mα(Sn) ≤ Mα(Tn) <Mα(T ). (3.2.18)

The aim is to prove the following proposition.

Proposition 3.2.13. There exists k0 = k0(α) such that for (bn)n as in (3.2.15) with
k ≥ k0 and for n sufficiently large, OTP(bn) = {Tn}.

In the next lemma, for any set A and ρ > 0 we denote Bρ(A) :=
⋃

a∈ABρ(a).

Lemma 3.2.14. For n ∈ N \ {0} let bn be as in (3.2.15) and Sn ∈ OTP(bn). For every
subsequence (Snj

)j∈N and current S such that FK(Snj
− S) → 0 as j → ∞ we have S ∈

OTP(b) and moreover for every ρ > 0 we have supp(Snj
) ⊂ Bρ(supp(S)∪{p1, . . . , ph}),

for j sufficiently large.

Proof. The first part of the proposition is a direct consequence of Theorem 1.3.35. To-
wards a proof by contradiction of the second part, assume that there exists r > 0 and,
for every j, a point

qj ∈ supp(Snj
) \B2r(supp(S) ∪ {p1, . . . , ph}). (3.2.19)

By [31, Proposition 2.6]8 we have

lim inf
j

Mα(Snj
Br(supp(S) ∪ {p1, . . . , ph})) ≥ Mα(S). (3.2.20)

On the other hand, by (3.2.15) and (3.2.19) the current Snj
has no boundary in Br(qj),

for j sufficiently large. Moreover, by Proposition 1.3.31 the restriction Rj of Snj
Br(qj)

to the connected component of its support containing qj has nontrivial boundary, and
more precisely applying Proposition 1.2.43 with f(x) = |x − qj| we deduce that ∅ ≠
supp(∂Rj) ⊂ ∂Br(qj). We conclude that supp(Rj) contains a path connecting qj to a
point of ∂Br(qj). By Lemma 3.2.6 such path has multiplicity bounded from below by
k−1. This allows to conclude that

Mα(Snj
Br(qj)) ≥ rk−α. (3.2.21)

Combining (3.2.19),(3.2.20), and (3.2.21), we conclude

lim inf
j

Mα(Snj
) ≥ Mα(S) + rk−α = Mα(T ) + rk−α,

which contradicts (3.2.18).

We now prove the following main lemma.

8This proposition is a polyhedral approximation theorem (similar to Theorem 1.2.31) for more general
notions of the α-mass.
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Lemma 3.2.15. There exists k0 = k0(α) with the following property. Let T and (Tn)n be
as in (3.2.15) with k ≥ k0 and let S and (Snj

)j be as in Lemma 3.2.14. Then Snj
= Tnj

,
for j sufficiently large and in particular S = T .

Proof. We divide the proof in three steps. First we prove that locally in a box around
each point p ∈ {p1, . . . , ph} ∩ supp(S) for j sufficiently large the current Snj

is a mini-
mizer of the α-mass for a certain boundary whose support is a set of four almost collinear
points. Then, we analyze all the possible topologies for the minimizers with such bound-
ary and we are able to exclude all of them except for two. Finally, we combine the local
analysis with a global energy estimate to conclude.

Local structure of Snj
.

Let ρ be sufficiently small, to be chosen later (see (2a), (3a) and (3b) in Section 3.2.3).
For every i = 1, . . . , h and for pi ∈ supp(S), by Lemma 3.2.12 we can choose orthonormal
coordinates (x, y) ∈ R× Rd−1 such that, up to a dilation with homothety ratio c with

c >
8

dist(pi, supp(b) ∪BR(S))
,

denoting Q := [−8, 8]× Bd−1
ρ (0) and Bj := (−cn−1

j , 0), Cj := (cn−1
j , 0), for j = 1, 2, . . . ,

the following holds:

(i) pi = (0, 0);

(ii) S Q = θJσK, where θ ∈ Z and σ := [−8, 8]× {0}d−1 is positively oriented;

(iii) {p1, . . . , ph} ∩ σ = {pi};

(iv) for j sufficiently large we have bnj
Q = k−1θ(δBj

− δCj
).

By Lemma 3.2.14, for this ρ, we may choose j large enough such that

supp(Snj
) ∩ Q̄ ⊂ Bρ(σ). (3.2.22)

For x ∈ R we recall the notation Sx
nj

for the slice of Snj
Q at the point x with respect

to the projection π : R×Rd−1 → R. We infer from the flat convergence of Snj
to S that

for H1-a.e. x ∈ [−8, 8] we have

FK(S
x
nj

− θδ(x,0)) → 0 as j → ∞ (3.2.23)

and moreover by Lemma 3.2.6 the multiplicities of Sx
nj

are integer multiples of k−1.

We aim to prove that for j sufficiently large there are points y±j ∈ Bd−1
ρ (0) such that

S±4
nj

= θδ(±4,y±j ), (3.2.24)
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To this aim we seek points x1(j) ∈ [−6,−5], x2(j) ∈ [−2,−1], x3(j) ∈ [1, 2] and x4(j) ∈
[5, 6] such that for i = 1, 2, 3, 4 we have

Sxi(j)
nj

= θδ(xi(j),yi(j)), (3.2.25)

for some points yi(j) ∈ Bd−1
ρ (0). If so, by Proposition 1.2.43, (3.2.25) and (3.2.22) imply,

denoting

Qj
1 := (x1(j), x2(j))×Bd−1

ρ (0) and Qj
2 := (x3(j), x4(j))×Bd−1

ρ (0),

that

∂(Snj
Qj

1) = Sx2(j)
nj

− Sx1(j)
nj

and ∂(Snj
Qj

2) = Sx4(j)
nj

− Sx3(j)
nj

.

In turn, by Proposition 1.3.31, the latter implies (3.2.24).
In order to prove (3.2.25), we focus on the interval I := [1, 2] as the argument for

the remaining intervals is identical. Firstly, we observe that by (3.2.23) we have

lim inf
j

(M(Sx
nj
)) ≥ θ for H1-a.e. x ∈ I. (3.2.26)

Next, denoting Ω := I × Bd−1
ρ (0), we claim that for j sufficiently large and for every

C > 0 it holds that

H1({x ∈ I : Mα(Sx
nj
) ≤ θα + C}) > 0, (3.2.27)

where for a 0-current Z :=
∑

ℓ∈N θℓδzℓ we denoted Mα(Z) :=
∑

ℓ∈N|θℓ|α.
Assume by contradiction that (3.2.27) is false for infinitely many indices j. By

Corollary 1.2.42, for those indices we have

Mα(Snj
Ω̄) ≥ θα + C = Mα(S Ω̄) + C. (3.2.28)

The latter, combined with (3.2.18), implies that for the same indices we have

Mα(Snj
(Rd \ Ω̄)) <Mα(S (Rd \ Ω̄))− C,

which contradicts [31, Proposition 2.6]. From (3.2.26) and (3.2.27) we deduce that for j
sufficiently large there exists x1(j) ∈ I such that

M(Sx1(j)
nj

) ≥ θ and Mα(Sx1(j)
nj

) ≤ θα + C. (3.2.29)

Lastly we prove that if C is sufficiently small, then (3.2.29) implies

Sx1(j)
nj

= θδ(x1(j),y1(j)), (3.2.30)

for some point y1(j) ∈ Bd−1
ρ (0), thus completing the proof of (3.2.25).

Towards a proof by contradiction of (3.2.30), observe that for every 0-current Z =∑M
ℓ=1 θℓδzℓ , with M ≥ 2, |θℓ| ≥ k−1 and zℓ distinct, satisfying M(Z) =

∑
ℓ|θℓ| ≥ θ,
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the strict subadditivity of the function t 7→ tα (for t > 0) yields the existence of a
C̄ = C̄(α, θ, k) > 0 such that

Mα(Z) = |θ1|α+
M∑
ℓ=2

|θℓ|α≥ min{(mk−1)α + (θ −mk−1)α : m = 1, . . . , kθ − 1} > θα + C̄.

This contradicts (3.2.29), by the arbitrariness of C.
It follows from (3.2.24) and Proposition 1.2.43 that, denoting

Q′ := (−4, 4)×Bd−1
ρ (0), Aj := (−4, y−j ) and Dj := (4, y+j ),

we have
∂(Snj

Q′) = θ
(
δDj

− δAj
+ k−1(δBj

− δCj
)
)
, (3.2.31)

for j sufficiently large (see Figure 3.4).

Q

Bρ(σ)

S

x1(j) x2(j) x3(j) x4(j)

Aj Dj

Q′

Snj Bj Cj

Snj

{−4} × R
d−1 {4} × R

d−1

Figure 3.4: Representation of parts of Snj
Q.

3.2.3 Analysis of the possible topologies

Now we study the possible topologies of Snj
Q′. Since Snj

∈ OTP(bnj
) we must have

Snj
Q′ ∈ OTP(∂(Snj

Q′)). In general, we will denote by σPR the oriented segment
from the point P to the point R. We aim to prove that for k ≥ k0(α) and for ρ ≤ ρ(k)
sufficiently small it holds that Snj

Q′ ∈ {Wj, Zj}, for j large enough, where

Wj := θ

(
JσAjBj

K + JσCjDj
K +

k − 1

k
JσBjCj

K
)

and Zj := θ

(
JσAjDj

K +
1

k
JσCjBj

K
)
,

(3.2.32)
see Table 3.1. We will do this by excluding every other topology comparing angle
conditions which are given by the multiplicities of the segments (which depend on k)
and contradict the choice of ρ. Thus, when we say for ρ small enough, we mean implicitly
to choose j large enough such that, by Lemma 3.2.14, for the desired ρ we have

supp(Snj
) ⊂ Bρ(supp(S) ∪ {p1, . . . , ph}).
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Write Snj
Q′ =

∑
i<j aijJσijK as in (3.2.9) and observe that by Lemma 3.2.8, since

H0(∂(Snj
Q′)) = 4, then H0(BR(Snj

Q′)) ∈ {0, 1, 2}. We thus analyze the three cases
separately and we recall that, by Lemma 3.2.10, in order to prove (3.2.32) it suffices to
prove that

supp(Snj
Q′) = σAjBj

∪ σBjCj
∪ σCjDj

or supp(Snj
Q′) = σAjDj

∪ σBjCj
.

Wj
A

B C

D

θ

θθ − δ

Zj
A

B C
D

θ

δ

Table 3.1: Representation of Wj and Zj. From now on δ := θ/k and we remove the
subscript j from the points.

Case 1 : BR(Snj
Q′) = ∅. Recalling Proposition 1.3.31, supp(Snj

Q′) must be one
of the following sets, sorted alphabetically:

(1a) σAjBj
∪ σAjCj

∪ σAjDj
,

(1b) σAjBj
∪ σAjCj

∪ σBjDj
,

(1c) σAjBj
∪ σAjCj

∪ σCjDj
,

(1d) σAjBj
∪ σAjDj

∪ σBjCj
,

(1e) σAjBj
∪ σAjDj

∪ σCjDj
,

(1f) σAjBj
∪ σBjCj

∪ σBjDj
,

(1g) σAjBj
∪ σBjCj

∪ σCjDj
,

(1h) σAjBj
∪ σBjDj

∪ σCjDj
,

(1i) σAjBj
∪ σCjDj

,
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(1j) σAjCj
∪ σAjDj

∪ σBjCj
,

(1k) σAjCj
∪ σAjDj

∪ σBjDj
,

(1l) σAjCj
∪ σBjCj

∪ σBjDj
,

(1m) σAjCj
∪ σBjCj

∪ σCjDj
,

(1n) σAjCj
∪ σBjDj

,

(1o) σAjCj
∪ σBjDj

∪ σCjDj
,

(1p) σAjDj
∪ σBjCj

,

(1q) σAjDj
∪ σBjCj

∪ σBjDj
,

(1r) σAjDj
∪ σBjCj

∪ σCjDj
,

(1s) σAjDj
∪ σBjDj

∪ σCjDj
.

Observe that we omitted the cases

(i) σAjBj
∪ σAjCj

∪ σBjCj
,

(ii) σAjBj
∪ σAjDj

∪ σBjDj
,

(iii) σAjCj
∪ σAjDj

∪ σCjDj

(iv) σBjCj
∪ σBjDj

∪ σCjDj

because, independently of the position of the points, the support either contains a loop
or does not contain one of the four points in the support of the boundary. The only
exceptions to this behavior are (ii) and (iii) only when the four points are collinear,
which is not relevant, as we discuss in Sub-case 1-1 below.

Sub-case 1-1. Firstly we observe that when the points Aj, Bj, Cj and Dj are collinear
the only admissible competitor is Zj.

Sub-case 1-2. Next, we analyze the case in which no triples among the points
Aj, Bj, Cj and Dj are contained in a line.

We immediately exclude those cases for which the corresponding set is not the sup-
port of any current with boundary ∂(Snj

Q′). Hence we can exclude (1i) and (1n),
because the endpoints of the two segments in the support have different multiplicities.
Moreover we exclude (1d), (1j), (1q) and (1r) as well, because the segment σAj ,Dj

should
have multiplicity θ, being either for Aj or Dj the only segment in the support containing
it. On the other hand, the remaining point (respectively Dj or Aj) is an endpoint also
for a different segment of the support, from which we deduce that the multiplicity of the
latter segment should be 0 (see Table 3.2).
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1d
A

B C D

A

B C D

1i

1j
A

B C D

A

B

C
D

1n

1q
A

B C D

A

B C D

1r

Table 3.2: Representation of (1d), (1i), (1j), (1n), (1q), (1r).

We exclude the following cases by direct comparison with the α-mass of Zj, for j
sufficiently large (see Table 3.3):

• (1a), whose corresponding α-mass is

θα(H1(σAjDj
) + k−α(H1(σAjBj

) +H1(σAjCj
)) >Mα(Zj).

• (1b), whose corresponding α-mass is

θα((1 + k−1)αH1(σAjBj
) +H1(σBjDj

) + k−αH1(σAjCj
)) >Mα(Zj).

• (1f), whose corresponding α-mass is

θα(H1(σAjBj
) +H1(σBjDj

) + k−αH1(σBjCj
)) >Mα(Zj).

• (1k), whose corresponding α-mass is

θα((1 + k−1)αH1(σAjDj
) + k−α(H1(σAjCj

) +H1(σBjDj
))) >Mα(Zj).

• (1l), whose corresponding α-mass is

θα((1 + k−1)αH1(σBjCj
) +H1(σAjCj

) +H1(σBjDj
)) >Mα(Zj).

• (1m), whose corresponding α-mass is

θα(H1(σAjCj
) +H1(σCjDj

) + k−αH1(σBjCj
)) >Mα(Zj).

• (1o), whose corresponding α-mass is

θα((1 + k−1)αH1(σCjDj
) +H1(σAjCj

) + k−αH1(σBjDj
)) >Mα(Zj).
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• (1s), whose corresponding α-mass is

θα(H1(σAjDj
) + k−α(H1(σBjDj

) +H1(σCjDj
)) >Mα(Zj).

1a
A

B C
D

δ δ θ

1b
A

B

C

D

θ + δ

δ

θ

1f
A

B

C

D

θ

θ

δ

1k
A

B C
D

δ

δ

θ + δ

1l
A

B

C

D

θ
θ + δ

θ
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1m
A

B C
D

θ

δ
θ

1o
A

B

C

D

θ

θ + δ

δ

1s
A

B C
D

θ

δ

δ

Table 3.3: Representation of (1a), (1b), (1f), (1k), (1l), (1m), (1o), (1s).

For j sufficiently large and for k ≥ k0(α), the α-mass corresponding to (1c) is (see
Table 3.4)

θα(H1(σCjDj
) + (1− k−1)αH1(σAjCj

) + k−αH1(σAjBj
))

> θα(H1(σCjDj
) + ((1− k−1)α + k−α)H1(σAjBj

))

> θα(H1(σCjDj
) +H1(σAjBj

) +
k−α

2
H1(σAjBj

))

> θα(H1(σCjDj
) +H1(σAjBj

) + k−αH1(σBjCj
)) = Mα(Wj).

(3.2.33)

Also, for j sufficiently large and for k ≥ k0(α), the α-mass corresponding to (1h) is (see
Table 3.4)

θα(H1(σAjBj
) + (1− k−1)αH1(σBjDj

) + k−αH1(σCjDj
))

> θα(H1(σAjBj
) + ((1− k−1)α + k−α)H1(σCjDj

))

> θα(H1(σAjBj
) +H1(σCjDj

) +
k−α

2
H1(σCjDj

))

> θα(H1(σAjBj
) +H1(σCjDj

) + k−αH1(σBjCj
)) = Mα(Wj).

(3.2.34)
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1c
A

B C
D

δ

θ − δ

θ

1h
A

B C

D

θ

δ

θ − δ

Table 3.4: Representation of (1c), (1h).

Lastly, we exclude case (1e) by direct comparison with the α-mass of Zj. For j
sufficiently large and for k ≥ k0(α), the α-mass corresponding to (1e) is (see Table 3.5)

θα((1− k−1)αH1(σAjDj
) + k−α(H1(σAjBj

) +H1(σCjDj
)))

> θα((1− k−1)αH1(σAjDj
) + k−α1

2
H1(σAjDj

))

> θα(H1(σAjDj
) +

1

4
k−αH1(σAjDj

))

> θα(H1(σAjDj
) + k−αH1(σBjCj

)) = Mα(Zj).

(3.2.35)

1e
A

B C
D

δ θ − δ

δ

Table 3.5: Representation of (1e).

Sub-case 1-3. The last situation we need to take into account is when exactly three
points are collinear. We will discuss the case in which the collinear points are Aj, Bj

and Cj or Aj, Cj and Dj. The remaining cases in which the collinear points are Bj, Cj

and Dj or Aj, Bj and Dj are symmetric and can be treated analogously, therefore we
leave the analysis to the interested reader.

Sub-case 1-3-1: Aj, Bj and Cj are collinear.
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The cases (1d), (1i), (1j), (1q), (1r) can be excluded for the same reason as in the
Sub-case 1-2 (see Table 3.6). We exclude cases (1b), (1f), (1l), (1n), which are coincident
(see Table 3.7), by direct comparison with the α-mass of Zj. For j sufficiently large, the
α-mass corresponding to the above cases is

θα(H1(σAjBj
) +H1(σBjDj

) + k−αH1(σBjCj
)) >Mα(Zj).

1d
A B C

D

A B C

D

1i

1j
A B C

D

A B C

D

1q

1r
A B C

D

Table 3.6: Representation of (1d), (1i), (1j), (1q), (1r) in the collinear case.

A B C

D

θ

θ

δ

Table 3.7: Representation of (1b), (1f), (1l), (1n) in the collinear case.

We exclude case (1a), since it coincides with case (1j), which we have already excluded
and we exclude cases (1k) and (1o) because they contain a loop (see Table 3.8).

1k
A B C

D

A B C

D

1o

Table 3.8: Representation of (1k) and (1o) in the collinear case.
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We do not need to exclude cases (1c) and (1m), since the current coincides with Zj

(see Table 3.9).

A B C

D

θ

θ

θ − δ

Table 3.9: Representation of (1c), (1m) in the collinear case.

Lastly, cases (1e), (1h), (1s) can be excluded with the same argument used in Sub-
case 1-2, since the segments in the corresponding support are in general position also
when Aj, Bj, and Cj are collinear (see Table 3.10).

1e
A B C

D

A B C

D

1h

1s
A B C

D

Table 3.10: Representation of (1e), (1h), (1s) in the collinear case.

Sub-case 1-3-2: Aj, Cj and Dj are collinear.
The cases (1d), (1i), (1n), (1q) can be excluded for the same reason as in the Sub-case

1-2 (see Table 3.11).

1d
A

B C D
A

B C D

1i

1n
A

B

C
D

A

B

C
D

1q

Table 3.11: Representation of (1d), (1i), (1n), (1q) in the collinear case.

We exclude cases (1k), (1o), (1s), which are coincident (see Table 3.12), by direct
comparison with the α-mass of Zj. For j sufficiently large, the α-mass corresponding to
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the above cases is

θα((1 + k−1)αH1(σCjDj
) +H1(σAjCj

) + k−αH1(σBjDj
)) >Mα(Zj).

A

B

C

D

θ
θ + δ

δ

Table 3.12: Representation of (1k), (1o), (1s) in the collinear case.

We do not exclude cases (1j), (1m) and (1r), since the current coincides with Zj (see
Table 3.13).

A

B C
D

θ

θ
δ

Table 3.13: Representation of (1j), (1m), (1r) in the collinear case.

We exclude cases (1a), (1c), (1e), which are coincident (see Table 3.14), by direct
comparison with the α-mass ofWj. For j sufficiently large and for k ≥ k0(α), the α-mass
corresponding to the above cases is

θα(H1(σCjDj
) + (1− k−1)αH1(σAjCj

) + k−αH1(σAjBj
))

> θα(H1(σCjDj
) + ((1− k−1)α + k−α)H1(σAjBj

))

> θα(H1(σCjDj
) + (1 +

1

2
k−α)H1(σAjBj

))

> θα(H1(σCjDj
) +H1(σAjBj

) + k−αH1(σBjCj
)) = Mα(Wj).

(3.2.36)

A

B C
D

θ − δ

θ

δ

Table 3.14: Representation of (1a), (1c), (1e) in the collinear case.

Lastly, cases (1b), (1f), (1h), (1l) can be excluded with the same argument used in
Sub-case 1-2, since the segments in the corresponding support are in general position
also when Aj, Cj, and Dj are collinear (see Table 3.15).
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1b
A

B

C
D

A

B

C
D

1f

1h
A

B

C
D

A

B

C
D

1l

Table 3.15: Representation of (1b), (1f), (1h), (1l) in the collinear case.

Case 2: BR(Snj
Q′) = {Ej}. Recalling that Ej is the endpoint of at least three

segments in the support of Snj
Q′, see the proof of Lemma 3.2.8, the only possibilities

are that supp(Snj
Q′) is one of the following sets (see Table 3.16):

(2a) σAjEj
∪ σBjEj

∪ σCjEj
∪ σ, with σ ̸= σDjEj

,

(2b) σAjEj
∪ σBjEj

∪ σDjEj
∪ σ, with σ ̸= σCjEj

,

(2c) σAjEj
∪ σCjEj

∪ σDjEj
∪ σ, with σ ̸= σBjEj

,

(2d) σBjEj
∪ σCjEj

∪ σDjEj
∪ σ, with σ ̸= σAjEj

,

(2e) σAjEj
∪ σBjEj

∪ σCjEj
∪ σDjEj

.

We exclude case (2a), indeed by Propositions 1.3.6 and 1.3.7, Ej ∈ conv({Aj, Bj, Cj}),
hence we have for ρ small and j sufficiently large

π −O(ρ) = ̸ AjBjCj ≤ ̸ AjEjCj ≤ π . (3.2.37)

This contradicts Proposition 1.3.7 for ρ ≤ ρ(k), since the modulus of the multiplicity
of σAjEj

, σEjBj
and σEjCj

belongs to [k−1,M(bnj
)], which by (3.2.16) is contained in

[k−1, (1 + hk−1)M(b)].

Cases (2b), (2c) and (2d) are excluded with a similar argument as in case (2a),
where the angle ̸ AjEjCj in (3.2.37) is replaced respectively by ̸ AjEjDj, ̸ AjEjDj and
̸ BjEjDj.

We exclude case (2e) by direct comparison with the α-mass of Zj. The α-mass
corresponding to (2e) is

θα(H1(σAjEj
) +H1(σEjDj

) + k−α(H1(σBjEj
) +H1(σEjCj

)))

≥ θα(H1(σAjDj
) + k−αH1(σBjCj

)) = Mα(Zj),
(3.2.38)

where the inequality is strict unless {Ej} = σAjDj
∩ σBjCj

, namely unless the current is
Zj, which of course we do not need to exclude.
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2a
A

B C

DE

2b
A

B C

D
E

2c
A

B C

DE

2d
A

B C

D
E

2e
A

B C

DE

Table 3.16: Representation of (2a), (2b), (2c), (2d), (2e). In (2a), (2b), (2c), (2d)
we do not represent the segment σ.

Case 3: BR(Snj
Q′) = {Ej, Fj}. Recalling Proposition 1.3.31 and the fact that

both Ej and Fj are the endpoints of at least three segments in the support of Snj
Q′,

see the proof of Lemma 3.2.8, up to switching between Ej and Fj, the only possibilities
are that supp(Snj

Q′) is one of the following sets (see Table 3.17):

(3a) σEjFj
∪ σAjEj

∪ σBjEj
∪ σCjFj

∪ σDjFj
,

(3b) σEjFj
∪ σAjEj

∪ σCjEj
∪ σBjFj

∪ σDjFj
,

(3c) σEjFj
∪ σAjEj

∪ σDjEj
∪ σBjFj

∪ σCjFj
.
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(3a) Denote by π0 the affine 2-plane passing through Aj, Bj and Fj (and therefore
containing Ej as well). By Proposition 1.3.7 the line ℓ containing σEjFj

divides π0 \ ℓ
into two open half-planes π−

0 and π+
0 containing respectively Aj and Bj. Let C

′
j and D

′
j

denote the orthogonal projections onto π0 of Cj and Dj respectively and observe that
C ′

j ∈ π+
0 . This follows from the fact that by Proposition 1.3.7 there exists a positive

constant κ (depending on k) such that ̸ AjEjFj ≤ π − κ and assuming C ′
j /∈ π+

0 would
lead to

̸ AjBjC
′
j ≤ ̸ AjEjFj ≤ π − κ,

which is a contradiction, for ρ sufficiently small with respect to k, since, due to the fact
that ̸ AjBjCj ≥ π

2
,

̸ AjBjC
′
j ≥ ̸ AjBjCj ≥ π −O(ρ).

On the other hand, the fact that C ′
j ∈ π+

0 implies that D′
j ∈ π−

0 , hence

̸ AjEjD
′
j ≤ ̸ AjEjFj ≤ π − κ,

which is a contradiction for ρ sufficiently small with respect to k, since, as above,

̸ AjEjD
′
j ≥ ̸ AjEjDj ≥ π −O(ρ).

(3b) By Proposition 1.3.7 applied at the branch point Ej we deduce that the angle
between the oriented segments σAjEj

and σEjFj
tends to 0 as k → ∞. By the same

argument applied at the branch point Fj we deduce the same property for the angle
between the oriented segments σEjFj

and σFjDj
. As a consequence, the angle between

the oriented segments σAjDj
and σEjFj

tends to 0 as k → ∞. Again, by Proposition
1.3.7, the angles ̸ CjEjFj and ̸ EjFjBj are equal to

π
2
+C(k) where C(k) tends to 0 as

k → ∞.

Next, using that the angle ̸ EjFjDj differs from π by a positive constant which
depends only on k, we observe that the plane containing Aj, Cj, Fj (and therefore also
Ej) is obtained from the plane containing Dj, Bj, Ej (and therefore also Fj) by a rotation
O around the line containing σEjFj

such that, for any fixed k, ∥O − Id∥< f(ρ), where
f(ρ) tends to 0 as ρ → 0. This implies that the angle between the oriented segments
σBjCj

and σAjEj
is larger than π

2
− c(k), where c(k) tends to 0 as k → ∞. This is a

contradiction for ρ sufficiently small and k sufficiently large, since for any k the angle
between the oriented segments σBjCj

and σAjDj
tends to 0 as ρ → 0 and for any ρ the

angle between the oriented segment σAjEj
and the oriented segment σAjDj

tends to 0
(independently of ρ) as k → ∞.

(3c) We exclude this case as the corresponding set is not the support of any current
with boundary ∂(Snj

Q′), because both the segments σAjEj
and σEjDj

should have
multiplicity θ, thus the multiplicity of σEjFj

would be zero.
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3a

A

B C

D

E Fθ θ

δδ
θ − δ

3b
A

B

C

D

F
E

θ

θδ

θ + δ
δ

3c

A

B C

D

E

F

Table 3.17: Representation of (3a), (3b), (3c).

Conclusion.

Let p ∈ {p1, . . . , ph} \ supp(S) and take r > 0 such that

p /∈ B3r(supp(S) ∪ ({p1, . . . , ph} \ {p})). (3.2.39)

Applying Lemma 3.2.14, for j sufficiently large we have

supp(Snj
) ⊂ Br(supp(S) ∪ {p1, . . . , ph})
= Br(supp(S) ∪ {p1, . . . , ph} \ {p}) ∪Br(p) .

(3.2.40)

By (3.2.39) we have that Br(supp(S)∪{p1, . . . , ph}\{p}) and B2r(p) are disjoint. Define
S̃nj

:= Snj
B2r({p}). By Proposition 1.2.43 with f(x) = dist(x, {p}) and (3.2.40), we

have that for j sufficiently large

∂S̃nj
= bnj

B2r({p}) = −1

k
∂(T Bnj

−1(p)), (3.2.41)

which is supported in exactly two points. Since necessarily S̃nj
∈ OTP(∂S̃nj

), we deduce
that

S̃nj
= −1

k
T Bnj

−1(p), (3.2.42)

for j sufficiently large.
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Combining (3.2.42), (3.2.32) and (3.2.18), we obtain that, for j sufficiently large and
for k ≥ k0(α)

Mα

(
Snj

+
1

k

h∑
i=1

T Bnj
−1(pi)

)
= Mα(Snj

) +
∑

i:Snj Q′=Wj

(1− (1− k−1)α)Mα(T Bnj
−1(pi))

−
∑

i:Snj Q′=Zj

k−αMα(T Bnj
−1(pi))−

∑
i:pi /∈supp(S)

k−αMα(T Bnj
−1(pi))

≤ Mα(Tnj
) +

∑
i:Snj Q′=Wj

(1− (1− k−1)α)Mα(T Bnj
−1(pi))

≤ Mα(Tnj
) +

h∑
i=1

(1− (1− k−1)α)Mα(T Bnj
−1(pi)) = Mα(T ).

(3.2.43)

Observe that the first inequality is strict unless

{i : pi /∈ supp(S)} = ∅ = {i : Snj
Q′ = Zj}. (3.2.44)

On the other hand, the inequality cannot be strict, since ∂(Snj
+ 1

k

∑h
i=1 T Bnj

−1(pi)) = b
by (3.2.15) and T ∈ OTP(b). We deduce that (3.2.44) holds, which by Lemma 3.2.12
implies that S = T and Snj

+ 1
k

∑h
i=1 T Bnj

−1(pi) = T and therefore, recalling (3.2.15),
Snj

= Tnj
for j sufficiently large.

Proof of Proposition 3.2.13. Since the conclusion of Lemma 3.2.15 holds for every con-
verging subsequence Snj

, we deduce that Sn = Tn and therefore OTP(bn) = {Tn}, for
n sufficiently large.

3.2.4 Proof of Theorem 3.2.1

Recall that by Lemma 3.2.4 it suffices to prove that the set AC \ NUC is FK-dense in
AC . Fix b ∈ AC and ε > 0. Let δ > 0 and b′′ ∈ AC−δ be obtained by Lemma 3.2.5. In
particular let bI ∈ I0(K) be such that b′′ = ηbI for some η > 0.

Fix T ∈ OTP(bI) and let p1, . . . , ph be obtained applying Lemma 3.2.12 to the
current T . Observe that h depends on T . Let k ∈ N \ {0} be such that k ≥ k0(α) given
by Proposition 3.2.13 and moreover hk−1C ≤ η−1δ. For n = 1, 2, . . . , let bn be obtained
as in (3.2.15), where b is replaced with bI . By (3.2.16), for every n we have

M(ηbn) = ηM(bn) ≤ η(M(bI) + hk−1C) ≤ η(η−1(C − δ) + η−1δ) = C.

Moreover, letting Sn ∈ OTP(bn), by (3.2.18) we have Mα(ηSn) ≤ Mα(ηT ) ≤ C − δ,
which allows to conclude that ηbn ∈ AC for every n ∈ N \ {0}. By Proposition 3.2.13
we deduce that ηbn ∈ AC \NUC for n sufficiently large, and by (3.2.17), we have

FK(ηbn − b) ≤ FK(ηbn − ηbI) + FK(b
′′ − b) < 2ε,
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for n sufficiently large. By the arbitrariness of ε we finish the proof of the density
of AC \ NUC and hence the proof of Theorem 3.2.1, concluding generic uniqueness of
optimal transport paths. □
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