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Abstract

In this paper, warped product CR-submanifolds in Kähler manifolds and warped product
contact CR-submanifolds in Sasakian, Kenmotsu and cosymplectic manifolds, are shown
to possess a geometric property; namely DT -minimal. Taking benefit from this property,
an optimal general inequality is established by means of the Gauss equation, we leave
cosyplectic because it is an easy structure. Moreover, a rich geometry appears when the
necessity and sufficiency are proved and discussed in the equality case. Applying this
general inequality, the inequalities obtained by Munteanu are derived as particular cases.
Up to now, the method used by Chen and Munteanu can not extended for general ambient
manifolds, this is because many limitations in using Codazzi equation. Hence, Our method
depends on the Gauss equation. The inequality is constructed to involve an intrinsic
invariant (scalar curvature) controlled by an extrinsic one (the second fundamental form),
which provides an answer for the well-know Chen’s research problem (Problem 1.1). As
further research directions, we have addressed a couple of open problems arose naturally
during this work and depending on its results.
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1. Introduction
The notion of warped products has been playing some important roles in the theory of

general relativity as they have been providing the best mathematical models of our universe
for now. In the mathematical field these have been extensively studied for many years,
and recently new types have also been introduced (see for example, [4, 7,18,26]). A great
interest is also addressed to the CR-warped-product manifolds (see [2, 8, 9, 16, 17, 28, 29]),
and the present work is aimed precisely at the latter, especially as submanifolds of Kähler
manifolds, also of enormous importance, as well as in the mathematical field, also in string
theory.

Another aspect to underline is that the often involved extrinsic and intrinsic Riemannian
invariants have wide applications in other fields of science as well. Classically, among
extrinsic invariants, the shape operator and the squared mean curvature are the most
important ones. Among the main intrinsic invariants, sectional, Ricci and scalar curvatures
are the well-known ones. So, based on Nash’s Theorem, our research programs is to search
for control of extrinsic quantities in relation to intrinsic quantities of Riemannian manifolds
via Nash’s Theorem and to search for their applications [10, 14]. Since it is an inevitable
motivation, this was quite enough for Chen to address the following problem.
Problem 1.1. Establish simple relationships between the main extrinsic invariants and
the main intrinsic invariants of a submanifold.

Several famous results in differential geometry, such as isoperimetric inequality, Chern-
Lashof’s inequality, and Gauss-Bonnet’s theorem among others, can be regarded as results
in this respect. The current paper aims to continue this sequel of inequalities.

Combining special case inequalities in [12], we also have:
Theorem 1.2. Let Mn = NT ×f N⊥ be a CR-warped product submanifold in a complex
space form M̃2m(cKa). Then, we have the following

1
2

||h||2 ≥ 2n1n2
cKa

4
+ n2||∇ ln f ||2 − n2 ∆(ln f).

The current paper is organized to include eight sections. After the introduction, we
present in section two, preliminaries, the basic definitions and formulas. In section three,
we prove preparatory basic lemmas, which are necessary and useful for next sections. In
the fourth section, it has been shown that warped product CR-submanifolds in Kähler and
nearly Kähler manifolds possess a geometric property; namely DT -minimal submanifolds.
Section five is devoted to present the statement and proof of the the main theorem in this
article, here we consider warped product CR-submanifolds in complex space form to prove
a general inequality involving the scalar curvature and the the squared norm of the second
fundamental form. This inequality is derived using the Gauss equation, it generalizes all
other inequalities which were derived by means of Codazzi equation. Moreover, it presents
a new answer for Problem 1.1. Section six provides many geometric applications, part of
them is obtaining the inequalities of [12] as particular case inequalities from our main
inequality. In the seventh section, we extend this inequality to generalized complex space
form as an ambient manifold. In the final section, we hypothesize two open problems arose
naturally due to the results of this work.

2. Preliminaries
Let M̃m be a C∞ real m-dimensional manifold∗. The curvature tensor R̃ of ∇̃ is a

tensor field of type (1, 3) given by
R̃(X, Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X, Y ]Z, (2.1)

∗Throughout this work, we use the symbol ~ for ambient manifolds, in order to be distinguished from the
terminology of submanifolds.
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and the (0, 4) tensor field defined by

R̃(X, Y, Z, W ) = g̃(R̃(X, Y )Z, W ) (2.2)

is called the Riemannian curvature tensor, for any X, Y, Z, W ∈ Γ(TM̃m). It is well-
known that the Riemannian curvature tensor is a local isometry invariant.

If we choose two linearly independent tangent vectors X, Y ∈ TxM̃
m, then the sectional

curvature of the 2-plane π spanned by X and Y is given in terms of the Riemannian
curvature tensor R̃ by

K̃(X ∧ Y ) = g̃(R̃(X,Y )Y,X)
g̃(X,X)g̃(Y, Y ) − (g̃(X,Y ))2 . (2.3)

In case that the 2-plane π is spanned by orthogonal unit vectors X and Y from the tangent
space TxM̃

m, x ∈ M̃m, the previous definition may be written as

K̃(π) = K̃M̃m(X ∧ Y ) = g̃(R̃(X, Y )Y, X). (2.4)

Next, consider a local field of orthonormal frames {e1, · · · , em} on M̃m.
In this context, we shall define another important Riemannian intrinsic invariant called

the scalar curvature of M̃m, and denoted by τ̃(TxM̃
m), which, at some x in M̃m, is given

by
τ̃(TxM̃

m) =
∑

1≤i<j≤m

K̃ij , (2.5)

where K̃ij = K̃(ei ∧ ej). It is clear that, equation (2.5) is congruent to

2τ̃(TxM̃
m) =

∑
1≤i 6=j≤m

K̃ij . (2.6)

In particular, for a 2-dimensional Riemannian manifold, the scalar curvature is its
Gaussian curvature.

Next, we recall two important differential operators of a differentiable function ψ on
M̃m; namely the gradient ∇̃ψ and the Laplacian ∆ψ of ψ, which are defined, respectively,
as follows:

g̃(∇̃ψ,X) = Xψ (2.7)
and

∆ψ =
m∑

i=1
((∇̃eiei)ψ − eieiψ), (2.8)

for any vector field X tangent to M̃m, where ∇̃ denotes the Levi-Civita connection on
M̃m. As a consequence, we have:

||∇̃ψ||2 =
m∑

i=1

(
ei(ψ)

)2
. (2.9)

From the integration theory of manifolds, if M̃m is orientable compact, then we have:∫
M̃m

∆fdV = 0, (2.10)

where dV denotes to the volume element of M̃m.
In an attempt to construct manifolds of negative curvatures, in [5] introduced the notion

of warped product manifolds as follows:
Let N1 and N2 be two Riemannian manifolds with Riemannian metrics gN1 and gN2 ,
respectively, and f > 0 a C∞ function on N1. Consider the product manifold N1 × N2
with its projections π1 : N1 ×N2 7→ N1 and π2 : N1 ×N2 7→ N2. Then, the warped product
M̃m = N1 ×f N2 is the Riemannian manifold N1 × N2 = (N1 × N2, g̃) equipped with a
Riemannian structure such that g̃ = gN1 + f2gN2 .
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A warped product manifold M̃m = N1 ×f N2 is said to be trivial if the warping function
f is constant. For a nontrivial warped product N1 ×f N2, we denote by D1 and D2 the
distributions given by the vectors tangent to leaves and fibers, respectively. Thus, D1 is
obtained from tangent vectors of N1 via the horizontal lift and D2 is obtained by tangent
vectors of N2 via the vertical lift.

Now, let {e1, · · · , en1 , en1+1, · · · , em} be local fields of orthonormal frame of Γ(TM̃m)
such that n1, n2 and m are the dimensions of N1, N2 and M̃m, respectively. Then, for
any Riemannian warped product M̃m = N1 ×f N2. It is well known that the sectional
curvature and the warping function are related by [10,14,15]

n1∑
a=1

m∑
A=n1+1

K̃(ea ∧ eA) = n2∆f
f

. (2.11)

Now, we turn our attention to the differential geometry of the submanifold theory. The
Gauss and Weingarten formulas are, respectively, given by

∇̃XY = ∇XY + h(X,Y ) (2.12)
and

∇̃Xζ = −AζX + ∇⊥
Xζ (2.13)

for all X,Y ∈ Γ(TMn) and ζ ∈ Γ(T⊥Mn), where ∇̃ and ∇ denote respectively for the
Levi-Civita and the induced Levi-Civita connections on M̃m and Mn, and Γ(TMn) is the
module of differentiable sections of the vector bundle TMn. ∇⊥ is the normal connection
acting on the normal bundle T⊥Mn.

Here, it is well-known that the second fundamental form h and the shape operator Aζ

of Mn are related by
g(AζX,Y ) = g(h(X,Y ), ζ) (2.14)

for all X,Y ∈ Γ(TMn) and ζ ∈ Γ(T⊥Mn), [3, 25].
Geometrically, Mn is called a totally geodesic submanifold in M̃m if h vanishes identi-

cally. Particularly, the relative null space, Nx, of the submanifold Mn in the Riemannian
manifold M̃m is defined at a point x ∈ Mn by as

Nx = {X ∈ TxM
n : h(X,Y ) = 0 ∀ Y ∈ TxM

n}. (2.15)
Likewise, we consider a local field of orthonormal frames ∗ {e1, · · · , en, en+1, · · · , em}

on M̃m, such that, restricted to Mn, {e1, · · · , en} are tangent to Mn and {en+1, · · · , em}
are normal to Mn. Then, the mean curvature vector H⃗(x) is introduced as

H⃗(x) = 1
n

n∑
i=1

h(ei, ei). (2.16)

On one hand, we say that Mn is a minimal submanifold of M̃m if H⃗ = 0. On the
other hand, one may deduce that Mn is totally umbilical in M̃m if and only if h(X,Y ) =
g(X,Y )H⃗, for any X, Y ∈ Γ(TMn). It is remarkable to note that the scalar curvature
τ(x) of Mn at x is identical with the scalar curvature of the tangent space TxM

n of Mn

at x; that is, τ(x) = τ(TxM
n) [10].

In this series, the well-known equation of Gauss is given by
R(X,Y, Z,W ) = R̃(X,Y, Z,W )

+g(h(X,W ), h(Y, Z)) − g(h(X,Z), h(Y,W )),
(2.17)

for any vectors X, Y, Z, W ∈ Γ(TMn), where R̃ and R are the curvature tensors of M̃m

and Mn, respectively.
∗Throughout this work, Mn = N1 ×f N2 denotes for the isometrically immersed warped product subman-
ifold in M̃m. The numbers m, n, n1, and n2 are the dimensions of M̃m, Mn, N1 and N2, respectively.
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From now on, we refer to the coefficients of the second fundamental form h of Mn with
respect to the above local frame by the following notation:

hr
ij = g(h(ei, ej), er), (2.18)

where i, j ∈ {1, ..., n}, and r ∈ {n + 1, ...,m}. First, by making use of (2.18), (2.17) and
(2.4), we get the following:

K(ei ∧ ej) = K̃(ei ∧ ej) +
m∑

r=n+1
(g(hr

ii er, h
r
jj er) − g(hr

ij er, h
r
ij er)). (2.19)

Equivalently,

K(ei ∧ ej) = K̃(ei ∧ ej) +
m∑

r=n+1
(hr

iih
r
jj − (hr

ij)2), (2.20)

where K̃(ei ∧ ej) denotes the sectional curvature of the 2-plane spanned by ei and ej at x
in the ambient manifold M̃m. Secondly, by taking the summation in the above equation
over the orthonormal frame of the tangent space of Mn, and due to (2.5), we immediately
obtain:

2τ(TxM
n) = 2τ̃(TxM

n) + n2||H⃗||2 − ||h||2, (2.21)
where

τ̃(TxM
n) =

∑
1≤i<j≤n

K̃(ei ∧ ej) (2.22)

denotes the scalar curvature of the n-plane TxM
n in the ambient manifold M̃m.

For a warped product Mn = N1 ×f N2, let φ : Mn → M̃m be an isometric immersion
of N1 ×f N2 into an arbitrary Riemannian manifold M̃m. As usual, let h be the second
fundamental form of φ. We call the immersion φ mixed totally geodesic if h(X,Z) = 0
for any X in D1 and Z in D2, [10]. In particular, if we denote the restrictions of h to
N1 and N2 respectively by h1 and h2, then for i = 1 and 2, we call hi the partial second
fundamental form of φ. Automatically, the partial mean curvature vectors H⃗1 and H⃗2 are
defined by the following partial traces: ∗

H⃗1 = 1
n1

n1∑
a=1

h(ea, ea), H⃗2 = 1
n2

n1+n2∑
A=n1+1

h(eA, eA) (2.23)

for some orthonormal frame fields {e1, · · · , en1} and {en1+1, · · · , en1+n2} of D1 and D2,
respectively.

This motivation for the following definition may not be evident at this moment, but it
will emerge gradually as we prove its natural existence, then imposing it to have profoundly
general results, [3, 10,11,13,20,23,24].

Definition 2.1. An immersion φ : N1 ×f N2 −→ M̃m is called Di-totally geodesic if the
partial second fundamental form hi vanishes identically. If for all X, Y ∈ Di we have
h(X, Y ) = g(X, Y )K for some normal vector K, then φ is called Di-totally umbilical. It
is called Di-minimal if the partial mean curvature vector H⃗i vanishes, for i = 1 or 2.

For an odd dimensional real C∞ manifold M̃2l+1, let ϕ, ξ, η and g̃ be respectively a
(1, 1) tensor field, a vector field, a 1-form and a Riemannian metric on M̃2l+1 satisfying

ϕ2 = −I + η ⊗ ξ, ϕξ = 0, η ◦ ϕ = 0, η(ξ) = 1
η(X) = g̃(X, ξ), g̃(ϕX, ϕY ) = g̃(X,Y ) − η(X)η(Y ),

}
(2.24)

∗Throughout this work, we use the following convention on the range of indices unless otherwise stated,
the indices i, j run from 1 to n, the lowercase letters a, b from 1 to n1, the uppercase letters A, B from n1
to n and r from n to m.
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for any X, Y ∈ Γ(TM̃2l+1). Then we call (M̃2l+1, ϕ, ξ, η, g̃) an almost contact metric
manifold and (ϕ, ξ, η, g̃) an almost contact metric structure on M̃2l+1, [6, 19].

A fundamental 2-form Φ is defined on M̃2l+1 by Φ(X,Y ) = g̃(ϕX, Y ). An almost contact
metric manifold M̃2l+1 is called a contact metric manifold if Φ = 1

2dη. If the almost contact
metric manifold (M̃2l+1, ϕ, ξ, η, g̃) satisfies [ϕ, ϕ]+2dη⊗ξ = 0, then (M̃2l+1, ϕ, ξ, η, g̃) turns
out to be a normal almost contact manifold, where the Nijenhuis tensor is defined as

[ϕ, ϕ](X,Y ) = [ϕX, ϕY ] + ϕ2[X,Y ] − ϕ[X,ϕY ] − ϕ[ϕX, Y ] ∀ X, Y ∈ Γ(TM̃2l+1).
For our purpose, we will distinguish four classes of almost contact metric structures;

namely, Sasakian, Kenmotsu, cosymplectic and nearly trans-Sasakian structures. At first,
an almost contact metric structure is is said to be Sasakian whenever it is both contact
metric and normal, equivalently [27]

(∇̃Xϕ)Y = −g̃(X,Y )ξ + η(Y )X. (2.25)
A 2-plane π in TxM̃

2l+1 of an almost metric manifold M̃2l+1 is called a ϕ-section if π ⊥ ξ
and ϕ(π) = π. Accordingly, we say that M̃2l+1 is of constant ϕ-sectional curvature if the
sectional curvature K̃(π) does not depend on the choice of the ϕ-section π of TxM̃

2l+1

and the choice of a point x ∈ M̃2l+1. Based on this preparatory concept, a Sasakian
manifold M̃2l+1 is said to be a Sasakian space form M̃2l+1(cS), if the ϕ-sectional curvature
is constant cS along M̃2l+1. Then the associated Riemannian curvature tensor R̃ on
M̃2l+1(cS) is given by [19]:

R̃(X,Y ;Z,W ) = cS + 3
4

{
g̃(X,W )g̃(Y, Z) − g̃(X,Z)g̃(Y,W )

}

−cS − 1
4

{
η(Z)

(
η(Y )g̃(X,W ) − η(X)g̃(Y,W )

)
+
(
g̃(Y, Z)η(X) − g̃(X,Z)η(Y )

)
g̃(ξ,W )

−g̃(ϕX,W )g̃(ϕY,Z) + g̃(ϕX,Z)g̃(ϕY,W ) + 2g̃(ϕX, Y )g̃(ϕZ,W )
}
, (2.26)

for any X, Y, Z, W ∈ Γ(TM̃2l+1(cS)).
An almost contact metric manifold M̃2l+1 is called Kenmotsu manifold [19] if

(∇̃Xϕ)Y = g̃(ϕX, Y )ξ − η(Y )ϕX, (2.27)
By analogy with Sasakian manifolds, a Kenmotsu manifold M̃2l+1 is said to be a Ken-

motsu space form M̃2l+1(cKe), if the ϕ-sectional curvature is constant cKe along M̃2l+1,
whose Riemannian curvature tensor R̃ on M̃2l+1(cKe) is characterized by [1]:

R̃(X,Y ;Z,W ) = cKe − 3
4

{
g̃(X,W )g̃(Y, Z) − g̃(X,Z)g̃(Y,W )

}

−cKe + 1
4

{
η(Z)

(
η(Y )g̃(X,W ) − η(X)g̃(Y,W )

)
+
(
g̃(Y, Z)η(X) − g̃(X,Z)η(Y )

)
g̃(ξ,W )

−g̃(ϕX,W )g̃(ϕY,Z) + g̃(ϕX,Z)g̃(ϕY,W ) + 2g̃(ϕX, Y )g̃(ϕZ,W )
}
, (2.28)

for any X, Y, Z, W ∈ Γ(TM̃2l+1(cKe)). We notice that Kenmotsu manifolds are normal
but not quasi-Sasakian and hence not Sasakian [6].

In the case of killing almost contact structure tensors, consider a normal almost contact
metric structure (ϕ, ξ, η, g̃) with both Φ and η are closed. Then, such (ϕ, ξ, η, g̃) is called
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cosymplectic. Explicitly, cosymplectic manifolds are characterized by normality and the
vanishing of Riemannian covariant derivative of ϕ, i.e.,

(∇̃Xϕ)Y = 0. (2.29)

A cosymplectic manifold M̃2l+1 is said to be a cosymplectic space form M̃2l+1(cc), if
the ϕ-sectional curvature is constant cc along M̃2l+1 with Riemannian curvature tensor R̃
expressed by [6]:

R̃(X,Y ;Z,W ) = cc

4

{
g̃(X,W )g̃(Y, Z) − g̃(X,Z)g̃(Y,W )

−η(Z)
(
η(Y )g̃(X,W ) − η(X)g̃(Y,W )

)
−
(
g̃(Y, Z)η(X) − g̃(X,Z)η(Y )

)
g̃(ξ,W )

+g̃(ϕX,W )g̃(ϕY,Z) − g̃(ϕX,Z)g̃(ϕY,W ) − 2g̃(ϕX, Y )g̃(ϕZ,W )
}
, (2.30)

for any X, Y, Z, W ∈ Γ(TM̃2l+1(cc)). Hereafter, we call the almost contact manifold
M̃2l+1 a nearly cosymplectic manifold if:

(∇̃Xϕ)Y + (∇̃Y ϕ)X = 0. (2.31)

A submanifold Mn of an almost contact metric manifold M̃2l+1 is said to be a contact
CR-submanifold if there exist on Mn differentiable distributions DT and D⊥, satisfying
the following

(i) TMn = DT ⊕ D⊥ ⊕ 〈ξ〉,
(ii) DT is an invariant distribution, i.e., ϕ(DT ) ⊆ DT ,
(iii) D⊥ is an anti-invariant distribution, i.e., ϕ(D⊥) ⊆ T⊥Mn.
Denote by ν the maximal ϕ-invariant subbundle of the normal bundle T⊥Mn. Then it

is well-known that the normal bundle T⊥Mn admits the following decomposition

T⊥Mn = FD⊥ ⊕ ν. (2.32)

In almost contact manifolds M̃2m+1, the warped product NT ×f N⊥ is called a CR-
warped product submanifold, if the submanifolds NT and N⊥ are integral manifolds of DT

and D⊥, respectively.

3. Basic lemmas
Now, we turn our attention to almost contact manifolds, we are going to explain the

natural existence of Di-minimal warped product submanifolds in almost contact manifolds,
for both i = 1 and i = 2. Observe that all almost contact manifolds considered in this
thesis satisfy (∇̃ξϕ)ξ = 0. Hence, it is convenient to state:

Lemma 3.1. Let Mn be a submanifold tangent to the characteristic vector field ξ in an
almost contact manifold M̃2l+1. If (∇̃ξϕ)ξ = 0 on M̃2l+1, then h(ξ, ξ) = 0.

Beginning with Sasakian manifolds, we call a warped product of type Mn = NT ×f N⊥,
a contact CR- warped product submanifold.

Corollary 3.2. Let Mn = NT ×f N⊥ be a contact CR- warped product submanifold in a
Sasakian manifold M̃2l+1 such that ξ is tangent to the first factor. Then, the following
hold:

(i) h(X, ξ) = 0;
(ii) g(h(X,X), FZ) = 0;
(iii) g(h(X,X), ζ) = −g(h(ϕX, ϕX), ζ),

for every X ∈ Γ(TNT ), Z ∈ Γ(TN⊥) and ζ ∈ Γ(ν).
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Proof. From (2.25) we obtain:
X − η(X)ξ = −ϕ∇Xξ − ϕh(X, ξ).

Applying ϕ on the above equation, taking into consideration η(∇Xξ) = 0, then it yields
ϕX = ∇Xξ + h(X, ξ).

By comparing the tangential and normal terms in the above equation we get (i). (ii) is
well-known (for example, see [21, 22]). For the last part, we take an arbitrary ζ ∈ Γ(ν),
then by making use of (2.25) and (2.12), we obtain

∇XϕX + h(ϕX,X) − ϕ∇XX − ϕh(X,X) = −g(X,X)ξ + η(X)X,
taking the inner product with ϕζ in the above equation, we deduce:

g(h(ϕX,X), ϕζ) − g(h(X,X), ζ) = 0, (3.1)
interchanging X with ϕX in (3.1), gives

g(h(ϕX, ϕX), ζ) = g(h(ϕ(ϕX), ϕX), ϕζ) = g(∇̃ϕXϕ(ϕX), ϕζ)

= −g(∇̃ϕXX,ϕζ) + g(∇̃ϕX(η(X)ξ), ϕζ)
= −g(h(X,ϕX), ϕζ) + η(X)g(∇̃ϕXξ, ϕζ)
= −g(h(X,ϕX), ϕζ) + η(X)g(h(ϕX, ξ), ϕζ).

Making use of statement (i) in the above equation, we reach that
g(h(ϕX, ϕX), ζ) = −g(h(X,ϕX), ϕζ). (3.2)

From (3.1) and (3.2), we obtain statement (iii). �

The following two direct, but significant, results are two other key lemma for this section
that will be used later as well.

Lemma 3.3. Let φ : Mn = N1 ×f N2 −→ M̃m be an isometric immersion of an n-
dimensional warped product submanifold Mn into a Riemannian manifold M̃m. Then, we
have:

τ
(
TxM

n) = n2∆f
f

+
m∑

r=n+1

{ ∑
1≤a<b≤n1

(
hr

aah
r
bb −

(
hr

ab

)2)

+
∑

n1+1≤A<B≤n

(
hr

AAh
r
BB −

(
hr

AB

)2)}+ τ̃
(
TxN1

)
+ τ̃
(
TxN2

)
,

(3.3)
where n1, n2, n and m are the dimensions of N1, N2, M

n and M̃m, respectively.

Proof. From the definition of the scalar curvature, we have:

τ
(
TxM

n) =
∑

1≤i<j≤n

Kij =
n1∑

a=1

n∑
A=n1+1

KaA +
∑

1≤a<b≤n1

Kab +
∑

n1+1≤A<B≤n

KAB. (3.4)

Now, we recall the following well-known relation
n1∑

a=1

n∑
A=n1+1

K(ea ∧ eA) = n2∆f
f

, (3.5)

where {e1, · · · , en1 , en1+1, · · · , en} are local fields of orthonormal frame of Γ(TMn) such
that n1, n2 and n are the dimensions of N1, N2 and Mn, respectively. Combining the
above two equations, it yields

τ
(
TxM

n) = n2∆f
f

+ τ
(
TxN1

)
+ τ

(
TxN2

)
. (3.6)
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It is direct to write

τ
(
TxN1

)
=

m∑
r=n+1

∑
1≤a<b≤n1

(
hr

aah
r
bb −

(
hr

ab

)2)+ τ̃
(
TxN1

)
, (3.7)

and

τ
(
TxN2

)
=

m∑
r=n+1

∑
n1+1≤A<B≤n

(
hr

AAh
r
BB −

(
hr

AB

)2)+ τ̃
(
TxN2

)
. (3.8)

By joining (3.6), (3.7) and (3.8) together, we get the result. �
Lemma 3.4. Let φ be a D2-minimal isometric immersion of a warped product submanifold
Mn = N1 ×f N2 into any Riemannian manifold M̃m. If N2 is totally umbilical in M̃m,
then φ is D2-totally geodesic.

Proof. Let ȟ and ĥ denote the second fundamental forms of N2 in Mn and M̃m, respec-
tively. Then for every vector fields Z and W tangent to N2 we have

h(Z,W ) = ĥ(Z,W ) − ȟ(Z,W ), (3.9)
and

ȟ(Z,W ) = −
(
g(Z,W )/f

)
∇(f). (3.10)

Notice that, for every warped product the leaves are totally geodesic and the fibers are
totally umbilical. Taking in consideration this fact and our hypothesis guarantees that
N2 is totally umbilical in both Mn and M̃m. Considering this fact with the above two
equations, we deduce that

h(Z,W ) = g(Z,W )(Ψ + ∇(ln f)), (3.11)
for some vector field Ψ ∈ Γ(TM̃m) such that Ψ is normal to Γ(TN2). Considering the
local field of orthonormal frames as in the above proof. Then, taking the summation over
the orthonormal frame fields of Γ(TN2) in the above equation, we get

n∑
A,B=n1+1

h(eA, eB) =
n∑

A,B=n1+1
g(eA, eB)(Ψ + ∇(ln f)).

Taking into account D2-minimality of φ, the left hand side of the above equation vanishes
and we get

0 = n2 (Ψ + ∇(ln f)).
Since N2 is not empty, we obtain

Ψ = −∇(ln f).
Making use of the above equation in (3.11), we obtain

h(Z,W ) = 0,
for every vector fields Z,W ∈ Γ(TN2). Meaning that; φ is D2-totally geodesic. This
completes the proof. �

4. DT -minimality of warped product CR-submanifolds in Kähler mani-
folds

Recently, it was proven that DT -minimality is possessed by a wide class of warped
product submanifolds, some of these warped product submanifolds were shown to have
this geometric property in [23,24].

In the sense of Definition 2.1, we are going to show the natural existence of DT -minimal
warped product CR-submanifolds in both Kähler and nearly Kähler manifolds.

Secondly, we provide the next key result which will be referred to frequently during this
section.
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Lemma 4.1. Let Mn = NT ×f N⊥ be a contact CR-warped product submanifold in
Sasakian manifolds M̃2l+1 such that ξ is tangent to NT . Then, Mn is D1-minimal warped
product, where D1 = DT ⊕ 〈ξ〉.

Proof. Consider the following local field of orthonormal frames of the Kähler manifold
M̃2m: {ξ, e1, · · · , es, es+1 = ϕe1, · · · , en1 = e2s = ϕes, en1+1 = e⋆

1, · · · , en1+n2 = en =
e⋆

q , en+1 = ϕe⋆
1, · · · , en+n2 = ϕe⋆

q , en+n2+1 = ē1, · · · , e2m = ē2l=γ} such that {e1, · · · ,
es, es+1 = ϕe1, · · · , en1 = e2s = ϕes}, {en1+1 = e⋆

1, · · · , en1+n2 = en = e⋆
q}, {en+1 =

ϕe⋆
1, · · · , en+n2 = ϕe⋆

q} and {en+n2+1 = ē1, · · · , e2m = ē2l=γ} are the local fields of or-
thonormal frames of Γ(TNT ), Γ(TN⊥), Γ(JTN⊥) and Γ(ν), respectively.

Using the terminology in (2.18), it is straightforward to have

2m∑
r=n+1

n1∑
a=1

hr
aa =

2m∑
r=n+1

(
hr

11 + · · · + hr
n1n1

)
.

In view of (2.32), the right hand side summation can be decomposed as

2m∑
r=n+1

n1∑
a=1

hr
aa =

2m−γ∑
r=n+1

(
hr

11 + · · · + hr
n1n1

)
+

2m∑
r=n+1+q

(
hr

11 + · · · + hr
n1n1

)
.

Taking into account part (i) of Corollary 3.2, the first summation on the right hand
side of the above equation vanishes, whereas we expand the other summation in view of
the above orthonormal frames to get

2m∑
r=n+1

n1∑
a=1

hr
aa =

2m∑
r=n+1+q

(
hr

11 + · · · + hr
ss + hr

s+1s+1 + · · · + hr
2s2s

)
.

Equivalently,

2m∑
r=n+1

n1∑
a=1

hr
aa =

2m∑
r=n+1+q

(
g(h(e1, e1), er) + · · · + g(h(es, es), er)

+g(h(Je1, Je1), er) + · · · + g(h(Jes, Jes), er)
)
.

Now, if we apply part (ii) of Corollary 3.2 on the above equation, then it automatically
gives

2m∑
r=n+1

n1∑
a=1

hr
aa =

2m∑
r=n+1+q

(
g(h(e1, e1), er) + · · · + g(h(es, es), er)

−g(h(e1, e1), er) − · · · − g(h(es, es), er)
)

= 0.

Clearly, this proves the vanishing of the coefficients hr
aa under summation, for a ∈

{1, · · · , n1} and r ∈ {n + 1, · · · , 2m}. Therefore, the partial mean curvature vector H⃗
defined in (2.23) does vanish. Hence, in the sense of Definition 2.1, we get the assertion. �

Remark 4.2. Putting D1 = DT , then by following the above scheme typically one can
show that warped product submanifolds of the type Mn = NT ×f N⊥, are D1-minimal in
nearly Kähler manifolds.
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5. A general inequality for warped product CR-submanifolds in Kähler
manifolds

By making use of the Gauss equation, we construct a new general inequality for DT -
minimal warped product CR-submanifolds in arbitrary Kähler manifolds. This inequality
generalizes all inequalities in [12].

Now, we present the main theorem of this article.

Theorem 5.1. Let φ : Mn = NT ×f N⊥ −→ M̃m be an isometric immersion of a warped
product CR-submanifold Mn into a Kähler manifold M̃m. Then, we have:

(i) 1
2 ||h||2 ≥ τ̃(TxM

n) − τ̃(TxNT ) − τ̃(TxN⊥) − n2∆f
f .

(ii) The equality in (i) holds identically if and only if NT , N⊥ and Mn are totally
geodesic, totally umbilical and minimal submanifolds in M̃m, respectively.

Proof. Via (2.21), we first have:

||h||2 = −2τ(TxM
n) + 2τ̃(TxM

n) + n2||H⃗||2.

In view of Lemma 3.3, the above equation takes the following form

||h||2 = 2τ̃(TxM
n) − 2τ̃(TxNT ) − 2τ̃(TxN⊥) − 2n2∆f

f
+ n2||H⃗||2

−2

 m∑
r=n+1

∑
1≤a<b≤n1

(
hr

aah
r
bb − (hr

ab)2)
−2

 m∑
r=n+1

∑
n1+1≤A<B≤n

(
hr

AAh
r
BB − (hr

AB)2) .
This is equivalent to

||h||2 = 2τ̃(TxM
n) − 2τ̃(TxNT ) − 2τ̃(TxN⊥) − 2n2∆f

f
+ n2||H⃗||2

−

 m∑
r=n+1

∑
1≤a6=b≤n1

(
hr

aah
r
bb − (hr

ab)2)
−

 m∑
r=n+1

∑
n1+1≤A 6=B≤n

(
hr

AAh
r
BB − (hr

AB)2) . (5.1)

Since φ is DT -minimal immersion, then

−

 m∑
r=n+1

∑
1≤a6=b≤n1

(
hr

aah
r
bb − (hr

ab)2) =

m∑
r=n+1

∑
1≤a6=b≤n1

(hr
ab)2 −

m∑
r=n+1

∑
1≤a6=b≤n1

hr
aah

r
bb =

︷ ︸︸ ︷
m∑

r=n+1

∑
1≤a6=b≤n1

(hr
ab)2 +

(
m∑

r=n+1

(
(hr

11)2 + · · · + (hr
n1n1)2))

︷ ︸︸ ︷
−
(

m∑
r=n+1

(
(hr

11)2 + · · · + (hr
n1n1)2))−

m∑
r=n+1

∑
1≤a6=b≤n1

hr
aah

r
bb .
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By means of the binomial theorem, we deduce that︷ ︸︸ ︷
m∑

r=n+1

∑
1≤a6=b≤n1

(hr
ab)2 +

(
m∑

r=n+1

(
(hr

11)2 + · · · + (hr
n1n1)2)) =

m∑
r=n+1

n1∑
a,b=1

(hr
ab)2,

and ︷ ︸︸ ︷
−
(

m∑
r=n+1

(
(hr

11)2 + · · · + (hr
n1n1)2))−

m∑
r=n+1

∑
1≤a6=b≤n1

hr
aah

r
bb =

−
m∑

r=n+1
(hr

11 + · · · + hr
n1n1)2.

Next, by combining the last three equations together we obtain:

−

 m∑
r=n+1

∑
1≤a6=b≤n1

(
hr

aah
r
bb − (hr

ab)2) =
m∑

r=n+1

n1∑
a,b=1

(hr
ab)2−

m∑
r=n+1

(hr
11+· · ·+hr

n1n1)2. (5.2)

By Definition 2.1, the second term in the right hand side vanishes whenever φ is DT -
minimal, consequently (5.2) reduces to

−

 m∑
r=n+1

∑
1≤a6=b≤n1

(
hr

aah
r
bb − (hr

ab)2) =
m∑

r=n+1

n1∑
a,b=1

(hr
ab)2. (5.3)

Combining (5.3) and (5), it yields to

||h||2 = 2τ̃(TxM
n) − 2τ̃(TxNT ) − 2τ̃(TxN⊥) − 2n2∆f

f
+ n2||H⃗||2

+
m∑

r=n+1

n1∑
a,b=1

(hr
ab)2

−

 m∑
r=n+1

∑
n1+1≤A 6=B≤n

(
hr

AAh
r
BB − (hr

AB)2) .
Equivalently,

||h||2 ≥ 2τ̃(TxM
n) − 2τ̃(TxNT ) − 2τ̃(TxN⊥) − 2n2∆f

f
+ n2||H⃗||2

−

 m∑
r=n+1

∑
n1+1≤A 6=B≤n

(
hr

AAh
r
BB − (hr

AB)2) .
Again, by adding and subtracting similar term technique, the above inequality becomes:

||h||2 ≥ 2τ̃(TxM
n) − 2τ̃(TxNT ) − 2τ̃(TxN⊥) − 2n2∆f

f
+ n2||H⃗||2

−
m∑

r=n+1

(hr
n1+1n1+1)2 + · · · + (hr

nn)2 +
∑

n1+1≤A 6=B≤n

hr
AAh

r
BB


+

m∑
r=n+1

(hr
n1+1n1+1)2 + · · · + (hr

nn)2 +
∑

n1+1≤A 6=B≤n

(hr
AB)2

 .
Applying the binomial theorem on the last two terms of the above equation, we derive

that:
||h||2 ≥ 2τ̃(TxM

n) − 2τ̃(TxNT ) − 2τ̃(TxN⊥) − 2n2∆f
f

+ n2||H⃗||2
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−
m∑

r=n+1
(hr

n1+1n1+1 + · · · + hr
nn)2

+
m∑

r=n+1

n∑
A,B=n1+1

(hr
AB)2.

Consequently,

||h||2 ≥ 2τ̃(TxM
n) − 2τ̃(TxNT ) − 2τ̃(TxN⊥) − 2n2∆f

f
+ n2||H⃗||2

−
m∑

r=n+1
(hr

n1+1n1+1 + · · · + hr
nn)2.

We know that the last term in the right hand side of the above inequality is equal to
−n2||H⃗||2 for DT -minimal warped product CR-submanifolds. By this fact, the inequality
of statement (i) follows immediately from the above inequality.

Now, the equality sign of the inequality in (i) holds if and only if

(a) h(DT ,DT ) = 0, (b) h(D⊥,D⊥) = 0.

Hence, we need to show that (a) and (b) hold if and only if NT , N⊥ and Mn are respectively
totally geodesic, totally umbilical and minimal submanifolds in M̃m.

First, assume that (a) and (b) are satisfied. Since Mn = NT ×f N⊥ is a warped product,
then NT and N⊥ are totally geodesic and totally umbilical in Mn, respectively. Therefore,
part (a) above implies that the first factor is a totally geodesic submanifold in M̃m. The
second factor is totally umbilical in M̃m because of part (b). Moreover, (b) and (a) together
imply that Mn is minimal in M̃m.

For the converse, (a) is clear. To obtain (b), we first notice that minimality and DT -
minimality of Mn in M̃m yield to D⊥-minimality of Mn in M̃m. Hence, Lemma 3.4 proves
(b). This gives the assertion. �

6. Special inequalities and applications
As a first application, we embark on by deriving the three theorems of [12] from Theorem

5.1 to be particular case theorems. For this, consider the warped product CR-submanifolds
of type NT ×f N⊥ in complex space forms. Since the ambient manifold M̃m of Theorem
5.1 is an arbitrary Kähler manifold, we can consider M̃m to be a complex space form
M̃2m(cKa). Hence, for every CR-warped product Mn = NT ×f N⊥ in M̃2m(cKa), we just
use the curvature tensor of complex space forms ([12]) to compute the following:

2
(
τ̃(TxM

n) − τ̃(TxN1) − τ̃(TxN2)
)

= cKa

4

(
n(n− 1) + 3n1 − n1(n1 − 1) − 3n1 − n2(n2 − 1)

)
= cKan1n2

2
.

Substituting the above expression in Theorem 5.1, because CR-warped product subman-
ifolds of Kaehler manifolds are D1-minimal, we obtain the following theorem as special
case.

Theorem 6.1. Let φ : Mn = NT ×f N⊥ −→ M̃m be an isometric immersion of a warped
product CR-submanifold Mn into a complex space form M̃m. Then, we have:

(i) ||h||2 ≥ 2n2

(
||∇(ln f)||2 − ∆(ln f) + cS+3

2 s+ 1
)
.

(ii) The equality in (i) holds identically if and only if NT , N⊥ and Mn are totally
geodesic, totally umbilical and minimal submanifolds in M̃m, respectively.
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Remark 6.2. Inequalities of Theorems 4.1, 5.1 and 6.1 in [12] are special cases of Theorem
5.1, where the ambient manifold is a complex Euclidean, a complex projective and a
complex hyperbolic space, respectively.

As another application of Theorem 5.1, we have:
Corollary 6.3. Let Mn = NT ×f N⊥ be a warped product CR-submanifold in a Kähler
manifold M̃m and suppose NT is compact. Denote by dvT and vol(NT ) the volume element
and the volume on NT . Let λT be the first non zero eigenvalue of the Laplacian on NT .
Then

1
2

∫
NT

||h||2dvT ≥ n1

(
τ̃(TxM) − τ̃(TxNT ) − τ̃(TxN⊥)

)
vol(NT ) + n1λT

∫
NT

(ln f)2dvT .

Proof. From the minimum principle we have∫
NT

||∇ ln f ||2dvT ≥ λT

∫
NT

(ln f)2dvT .

Now we have to integrate on NT the inequality of Theorem 5.1 which is satisfied by the
norm of h, and then we obtain immediately the result. �

Above integration over NT can be generalized to integration of a general measurable
manifold with invariance properties. For this we will state the following:
Theorem 6.4. Let Mµ be a measurable manifold with a measure µ defined on it. More-
over, let g : µ → µ′ be an invariance transformation from measure µ to measure µ′. Then,
we can express the integral

∫
Mµ

X over a quantity X as the limit∫
Mµ

= limg 7→id
∑

x∈Mµ
µ(x)X(gx) where x is an element of the manifold, here, the cover-

ing basis of it and id is the identity operator.
Proof. Consider two values of a quantity X, namely X(gx) and X(x) for any manifold
covering x. The transformation g will now tend to the identity transform.
Thus, X(gx) − X(x) will be infinitesimal in the case when the function is smooth. In
non-smooth case, the transformation g will shift the covering x from the singularity apart
by appropriate choice of it. Since the manifold Mµ is measurable, we can define a measure
on it and can also compute a measure-weighted sum over X. �

7. An extension of the inequality to warped product CR-submanifolds in
nearly Kähler manifolds

Theorem 7.1. Let φ : Mn = NT ×f N⊥ −→ M̃m be an isometric immersion of a warped
product CR-submanifold Mn into a nearly Kähler manifold M̃m. Then, we have:

(i) ||h||2 ≥ 2n2

(
cKe−3

2 s− ∆(ln f)
)
.

(ii) The equality in (i) holds identically if and only if NT , N⊥ and Mn are totally
geodesic, totally umbilical and minimal submanifolds in M̃m, respectively.

Following a similar analogue of the previous section, we can use the above theorem to
obtain a special inequality of generalized complex space forms.
Theorem 7.2. Let φ : Mn = NT ×f N⊥ −→ M̃m be an isometric immersion of a warped
product CR-submanifold Mn into a generalized complex space form M̃m. Then, we have:

(i) ||h||2 ≥ 2n2

(
||∇(ln f)||2 − ∆(ln f) + n1

cRK+3γ
4

)
.

(ii) The equality in (i) holds identically if and only if NT , N⊥ and Mn are totally
geodesic, totally umbilical and minimal submanifolds in M̃m, respectively.

It is clear that the above theorem generalizes Theorem 6.1. To see that, just let γ
vanish.
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8. Research problems based on the main inequality: Theorem 5.1
Due to the results of this paper, we hypothesize a pair of open problems, the first

is about proving this inequality whereas the second is to classify warped products CR-
submanifolds.

Firstly, since warped product CR-submanifolds do exist if the ambient manifold is
locally conformal Kähler space form, we suggest the following:

Problem 8.1. Prove the above inequality for warped product CR-submanifolds in locally
conformal Kähler space forms.

Secondly, we asked:

Problem 8.2. Can we classify warped product CR-submanifolds satisfying the equality
cases of this inequality in locally conformal Kähler space forms?

Acknowledgment. The first author want to offer many thanks for his university,
PTUK, Palestine Technical University- Kadoori.
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