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We derive the general formulas for a special configuration of the sequential warped-11

product semi-Riemannian manifold to be Einstein, where the base-manifold is the prod-12

uct of two manifolds both equipped with a generic diagonal conformal metrics. Subse-13

quently we study the case in which these two manifolds are conformal to a n1-dimensional14

and n2-dimensional pseudo-Euclidean space, respectively. For the latter case, we prove15

the existence of a family of solutions that are invariant under the action of a (n1 − 1)-16

dimensional group of transformations to the case of positive constant Ricci curvature17

(λ > 0).18

19

20

21

1. Introduction and Preliminaries22

23

The warped-product manifolds are type of manifolds introduced by Bishop and O’Neill24

[1]. These manifolds have become very important in the context of differential geom-25

etry and are also extensively studied in the arena of General Relativity, for instance26

with respect to generalized Friedmann-Robrtson-Walker spacetimes. Many properties27

for warped product manifolds and submanifolds were presented by B.-Y. Chen in [2].28
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A warped-product manifold can be constructed as follows. Let (B, gB) and (F, gF ) be1

two semi-Riemannian manifolds and τ , σ be the projection of B × F onto B and F ,2

respectively.3

The warped-product M = B×f F is the manifold B×F equipped with the metric tensor4

g = τ ∗gB + f 2σ∗gF , where ∗ denotes the pullback and f is a positive smooth function on5

B, the so-called warping function.6

7

Explicitly, if X is tangent to B × F at (p, q) (where p is a point on B and q is a8

point on F ), then:9

〈X,X〉 = 〈dτ(X), dτ(X)〉+ f 2(p)(dσ(X), dσ(X)).10

B is called the base-manifold of M = B×f F and F is the fiber-manifold. If f = 1, then11

B×f F reduces to a semi-Riemannian product manifold. The leaves B× q = σ−1(q) and12

the fibers p×F = τ−1(p) are Riemannian submanifolds of M . Vectors tangent to leaves13

are called horizontal and those tangent to fibers are called vertical. By H we denote the14

orthogonal projection of T(p,q)M onto its horizontal subspace T(p,q)(B× q) and V denotes15

the projection onto the vertical subspace T(p,q)(p× F ), see [3].16

17

If M is an n-dimensional manifold, and gM is its metric tensor, the Einstein condi-18

tion means that RicM = λgM for some constant λ, where RicM denotes the Ricci tensor19

of gM . An Einstein manifold with λ = 0 is called Ricci-flat manifolds.20

Then keeping this in mind, we get that a warped-product manifold (M, gM) = (B, gB)×f21

(F, gF ) (where (B, gB) is the base-manifold, (F, gF ) is the fiber-manifold), with22

gM = gB + f 2gF , is Einstein if only if (see [2]):23

24

(1.1) RicM = λgM ⇐⇒


RicB − d

f
Hess(f) = λgB

RicF = µgF
f∆f + (d− 1)|∇f |2 + λf 2 = µ25

26

where λ and µ are constants, d is the dimension of F , Hess(f), ∆f and ∇f are,27

respectively, the Hessian, the Laplacian (given by tr Hess(f)) and the gradient of f for28

gB, with f : (B)→ R+ a smooth positive function.29

30

Contracting first equation of (1) we get:31

32

(1.2) RBf
2 − f∆fd = nf 2λ33

where n and RB is the dimension and the scalar curvature of B respectively. From third34
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equation, considering d 6= 0 and d 6= 1, we have:1

2

(1.3) f∆fd+ d(d− 1)|∇f |2 + λf 2d = µd3

Now from (1.2) and (1.3) we obtain:4

(1.4) |∇f |2 + [λ(d−n)+RB

d(d−1)
]f 2 = µ

(d−1)
.5

6

In 2017 de Sousa and Pina [4], studied warped-product semi-Riemannian Einstein mani-7

folds in case that base-manifold is conformal to an n-dimensional pseudo-Euclidean space8

and invariant under the action of an (n − 1)-dimensional group with Ricci-flat fiber F .9

In [5] the authors extend the work done for multiply warped space.10

11

In [6], the author introduced a new type of warped-products called sequential warped-12

products, i.e. (M, gM) where M = (B1 ×h B2)×f F and gM = (gB1 + h2gB2) + f 2gF , to13

cover a wider variety of exact solutions to Einsteins field equation.14

Regarding the sequential warped-product manifolds, some works have been published in15

recent years ([7], [8], [9], [10], [11], [12]).16

17

The main aim of the present paper is largely to continue to extend the work done18

in [4] (as was done for the multiply warped-product manifold in [5]), also for a special19

case of sequential warped-product manifolds, (i.e. for h = 1, with B2 as an Einstein20

manifold, and flat fiber F , where the base-manifold B = B1 × B2 is the product of two21

manifolds both equipped with a conformal metrics, and the warping function is a smooth22

positive function f(x, y) = f1(x) + f2(y) where each is a function on its individual man-23

ifold). The method will be as follows: first deriving the general formulas to be Einstein24

and second, providing the existence of solutions that are invariant under the action of25

a (n1 − 1)-dimensional group of transformations to the case of positive constant Ricci26

curvature. In fact, since in both references, [4] and [5], the authors show solutions for27

the Ricci-flat case (λ = 0), we, following their same construction, show the existence28

of a family solutions for constant positive Ricci curvature (λ > 0). In particular, this29

proof of the existence of a family of solutions also holds for [4] considering dimF = dimB.30

31

Definition 1.1: We consider the special case of the Einstein sequential warped-product32

manifold, that satisfies (1.1). The manifold (M, gM) comprises the base-manifold (B, gB)33

which is a Riemannian (or pseudo-Riemannian) product-manifold B = B1 × B2, with34

B2 as an Einstein manifold (i.e., RicB2 = λgB2 , where λ is the same for (1.1) and gB235
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is the metric for B2), and dim(B2) = n2, dim(B1) = n1 the dimension of B2 and B1,1

respectively, so that dim(B) = n = n1 + n2. The warping function f : B → R+ is a2

smooth positive function f(x, y) = f1(x) +f2(y) (where each is a function on its individ-3

ual manifold, i.e., f1 : B1 → R+ and f2 : B2 → R+). The fiber-manifold (F, gF ) is the4

Rd, with orthogonal Cartesian coordinates such that gab = −δab.5

6

Proposition 1.1: If we write the B-product as B = B1 ×B2, where:7

i) RicBi
is the Ricci tensor of Bi referred to gBi

, where i = 1, 2,8

ii) f(x, y) = f1(x) + f2(y), is the smooth warping function, where fi : Bi → R+,9

iii) Hess(f) =
∑

i τ
∗
i Hessi(fi) is the Hessian referred on its individual metric, where τ ∗i10

are the respective pullbacks, (and τ ∗2Hess2(f2) = 0 since B2 is Einstein),11

iv) ∇f is the gradient (then |∇f |2 =
∑

i |∇ifi|2), and12

v) ∆f =
∑

i ∆ifi is the Laplacian, (from (iii) therefore also ∆2f2 = 0).13

Then the Ricci curvature tensor will be:14

15

(1.5)



RicM(Xi, Xj) = RicB1(Xi, Xj)− d
f
Hess1(f1)(Xi, Xj)

RicM(Yi, Yj) = RicB2(Yi, Yj)

RicM(Ui, Uj) = RicF (Ui, Uj)− gF (Ui, Uj)f
∗

RicM(Xi, Yj) = 0

RicM(Xi, Uj) = 0,

RicM(Yi, Uj) = 0,16

where f ∗ = ∆1f1

f
+ (d− 1) |∇f |

2

f2 , and Xi, Xj, Yi, Yj, Ui, Uj are vector fields on B1, B2 and17

F , respectively.18

19

Theorem 1.1: A warped-product manifold is a special case of an Einstein sequen-20

tial warped-product manifold, as defined in Definition 1.1, if and only if:21

22

(1.6) RicM = λgM ⇐⇒



RicB1 − d
f
τ ∗1Hess1(f1) = λgB1

τ ∗2Hess2(f2) = 0

RicB2 = λgB2

RicF = 0

f∆1f1 + (d− 1)|∇f |2 + λf 2 = 0,23

(since RicB is the Ricci curvature of B referred to gB, then RicB = RicB1 + RicB2 =24

λ(gB1 + gB2) + d
f
τ ∗1Hess1(f1).25

26

Therefore from (1.2) and (1.3):27

28
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(1.7) RM = λ(n+ d)⇐⇒



RB1f −∆1f1d = n1fλ

∆2f2 = 0

RB2 = λn2

RF = 0

f∆1f1 + (d− 1)|∇f |2 + λf 2 = 0.1
2

where n1 and R1 are the dimension and the scalar curvature of B1 referred to gB1 ,3

respectively.4

5

6

Proof. We applied the condition that the warped-product manifold of system (1.5)7

is Einstein. �8

9

This particular type of Einstein sequential warped-product manifold, as per Definition10

1.1, allows to cover a wider variety of exact solutions of Einstein’s field equation, without11

complicating the calculations much, compared to the Einstein warped-product manifolds12

with Ricci-flat fiber (F, gF ), also considered by the authors of [4].13

14

2. Conformal B-metrics15

16

In this section we will consider a special type of sequential warped-product manifold17

(M, gM), as described in the previous section, but in which the base-manifold is the18

product of two manifolds both equipped with a conformal metrics. First we will show19

the general formulas for which such a manifold M is Einstein, then we will show the same20

in the case where the conformal metrics are both diagonal, and finally for the case in21

which the base-manifold is the product of two conformal manifolds to a n1-dimensional22

and n2-dimensional pseudo-Euclidean space, respectively.23

24

Theorem 2.1: Let (B, gB), be the base-manifold B = (B1 × B2), B1 = Rn1, with25

coordinates (x1, x2, ..xn1), B2 = Rn2, with coordinates (y1, y2, ..yn2), where n1, n2 ≥ 3,26

and let gB = gB1 + gB2 be the metrics on B, where gB1 = εiδij and gB2 = εlδlr.27

Let f1 : Rn1 → R, f2 : Rn2 → R, ϕ1 : Rn1 → R and ϕ2 : Rn2 → R, be smooth functions,28

where f1 and f2 are positive functions, such that f = f1+f2 as in Definition 1.1. Finally,29

let (M, gM) be ((B1 ×B2)×f=f1+f2 F, gM), with gM = ḡB + (f1 + f2)2gF , with conformal30

metric ḡB = ḡB1 + ḡB2, where ḡB1 = 1
ϕ2

1
gB1, ḡB2 = 1

ϕ2
2 gB2, and F = Rd with gF = −δab.31

Then the warped-product metric gM = ḡB + (f1 + f2)2gF is Einstein with constant Ricci32
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curvature λ if and only if, the functions f1, f2, ϕ1 and ϕ2 satisfy:1

2

(I) (n1 − 2)fϕ1,xixj
− ϕ1f1,xixj

d− ϕ1,xi
f1,xj

d− ϕ1,xj
f1,xi

d = 0 for i 6= j,3

4

(II) (n2 − 2)ϕ2,ylyr
= 0 for l 6= r,5

6

(III) ϕ1[(n1 − 2)fϕ1,xixi
− ϕ1f1,xixi

d− 2ϕ1,xi
f1,xi

d]+7

8

+εi[fϕ1

∑n1

k=1 εkϕ1,xkxk
− (n1 − 1)f

∑n1

k=1 εkϕ1
2
,xk

+ ϕ1d
∑n1

k=1 εkϕ1,xk
f1,xk

] = εiλf ,9

10

(IV) ϕ2(n2 − 2)ϕ2,ylyl
+ εlϕ2

∑n2

s=1 εsϕ2,ysys − (n2 − 1)εl
∑n2

s=1 εsϕ2
2
,ys = λεl,11

12

(V) −fϕ1
2
∑n1

k=1 εkf1,xkxk
+ (n1 − 2)fϕ1

∑n1

k=1 εkϕ1,xk
f1,xk

+13

14

−(d− 1)(ϕ1
2
∑n1

k=1 εkf1
2
,xk

+ ϕ2
2
∑n2

s=1 εsf2
2
,ys) = λf 2.15

16

17

Before proving Theorem 2.1, and showing the existence of a solution for λ > 0, we18

want to deduce the formulas for generic diagonal conformal metrics gB1 and gB2 .19

Based on this, we consider (B, gB), the base-manifold B = (B1×B2), with dim(B1) = n1,20

dim(B2) = n2, and gB = gB1 + gB2 . We also consider f1 : Rn1 → R, f2 : Rn2 → R,21

ϕ1 : Rn1 → R and ϕ2 : Rn2 → R, are smooth functions, where f1 and f2 are positive22

functions, such that f = f1 + f2 as in Definition 1.1. And finally, we consider (M, gM)23

with ((B1 × B2) ×(f1+f2) F, gM), with gM = ḡB + (f1 + f2)2gF , with conformal metric24

ḡB = ḡB1 + ḡB2 , where ḡB1 = 1
ϕ2

1
gB1 , ḡB2 = 1

ϕ2
2 gB2 , and F = Rd with gF = −δab.25

26

From (1.6), considering the conformal metric on B1 and B2, it is easy to deduce that M27

is Einstein if and only if:28

(2.1) RicB̄1
= λḡB1 + d

f
Hess1̄(f1), or equivalently (2.2) RB̄1

= λn1 + d
f
∆1̄(f1),29

(2.3) RicB̄2
= λḡB2 , or equivalently (2.4) RB̄2

= λn2,30

(2.5) 0 = λf 2 + f∆1̄f1 + (d− 1)[|∇1̄f1|2 + |∇2̄f2|2].31

32

If we consider a generic diagonal metric, ḡBij
= ḡB1ij

+ ḡB2ij
= ηij, and ηij = 0 for33

i 6= j, then M is Einstein if and only if (2.1), (2.3) (or equivalently (2.2), (2.4)), (2.5)34

and the following, are satisfied:35
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(2.6) RicB̄1
= d

f
Hess1̄(f1), for i 6= j,1

(2.7) RicB̄2
= 0, for i 6= j.2

3

Proof of Theorem 2.1. At this point we can calculate:4

(2.8) RicB̄1
= 1

ϕ2
1
{(n1 − 2)ϕ1Hess1(ϕ1) + [ϕ1∆1ϕ1 − (n1 − 1)|∇1ϕ1|2]gB1},5

(2.9) RicB̄2
= 1

ϕ2
2
{(n2 − 2)ϕ2Hess2(ϕ2) + [ϕ2∆2ϕ2 − (n2 − 1)|∇2ϕ

2
2]gB2},6

so we can write:7

(2.10)RicB̄1
(Xi, Xj) = 1

ϕ2
1
{(n1−2)ϕ1Hess1(ϕ1)(Xi, Xj)+[ϕ1∆1ϕ1−(n1−1)|∇1ϕ1|2]gB1(Xi, Xj)},8

(2.11)RicB̄2
(Yl, Yr) = 1

ϕ2
2
{(n2−2)ϕ2Hess2(ϕ2)(Yl, Yr)+[ϕ2∆2ϕ2−(n2−1)|∇2ϕ2|2]gB2(Yl, Yr)},9

(2.12) RicM(Xi, Xj) = RicB̄1
(Xi, Xj)− d

f
Hess1̄(f1)(Xi, Xj),10

for what was stated in Proposition 1.1 we have:11

(2.13) RicM(Yl, Yr) = RicB̄2
(Yl, Yr),12

and in the end13

(2.14) RicM(Xi, Yj) = 0.14

(2.15) RicM(Xi, Uj) = 0.15

(2.16) RicM(Yi, Uj) = 0.16

Since RicF = 0 we obtain:17

(2.17) RicM(Ui, Uj) = −gM(Ui, Uj)(
∆1̄f1

f
+ (d− 1)gM (∇f,∇f)

f2 ),18

where, analogous to Proposition 1.1, we consider gM(∇f,∇f) = ḡB1(∇f1,∇f1)+ḡB2(∇f2,∇f2).19

20

Let ϕ1,xixj
, ϕ1,xi

, f1,xixj
, f1,xi

, ϕ2,ylyr
, ϕ2,yl

, f2,ylyr
and f2,yl

, be the second and the first21

order derivatives of ϕ1, ϕ2, f1 and f2, respectively, with respect to xixj and ylyr.22

Now we have:23

(2.18) Hess1(ϕ1)(Xi, Xj) = ϕ1,xixj
,24

(2.19) ∆1(ϕ1) =
∑n1

k=1 εkϕ1,xkxk
,25

(2.20) |∇1(ϕ1)|2 =
∑n1

k=1 εkϕ
2
1,xk

,26

(2.21) Hess2(ϕ2)(Yl, Yr) = ϕ2,ylyr
,27

(2.22) ∆2(ϕ2) =
∑n2

s=1 εsϕ2,ylyr28

(2.23) |∇2(ϕ2)|2 =
∑n2

s=1 εsϕ
2
2,ys

.29

(2.24) Hess1̄(f1)(Xi, Xj) = f1,xixj
−
∑

k Γ̄kijf1,xk
,30

where Γ̄kij = 0, Γ̄iij = −
ϕ1,xj

ϕ1
, Γ̄kii = εiεk

ϕ1,xk

ϕ1
and Γ̄iii = −

ϕ1,xj

ϕ1
, so (2.24) becomes:31

(2.25) Hess1̄(f1)(Xi, Xj) = f1,xixj
+

ϕ1,xj

ϕ1
f1,xi

+
ϕ1,xi

ϕ1
f1,xj

, for i 6= j, and32

(2.26) Hess1̄(f1)(Xi, Xi) = f1,xixi
+ 2

ϕ1,xi

ϕ1
f1,xi
− εi

∑n1

k=1 εk
ϕ1,xk

ϕ1
f1,xk

.33

34

Since Hess2̄(f2)(Yl, Yr) = 0, we get:35
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(2.27) Hess2̄(f2)(Yl, Yr) = f2,ylyr
+

ϕ2,yr

ϕ2
f2,yl

+
ϕ2,yl

ϕ2
f2,yr = 0, for l 6= r, and1

(2.28) Hess2̄(f2)(Yl, Yl) = f2,ylyl
+ 2

ϕ2,yl

ϕ2
f2,yl
− εl

∑n2

s=1 εs
ϕ2,ys

ϕ2
f2,ys = 0.2

3

Then the Ricci tensors are:4

(2.29) RicB̄1
(Xi, Xj) =

(n1−2)ϕ1,xixj

ϕ1
, for i 6= j,5

(2.30) RicB̄1
(Xi, Xi) =

(n1−2)ϕ1,xixi
+εi

∑n1
k=1 εkϕ1,xkxk

ϕ1
− (n1 − 1)εi

∑n1

k=1

εkϕ
2
1,xk

ϕ2
1

,6

(2.31) RicB̄2
(Yl, Yr) =

(n2−2)ϕ2,ylyr

ϕ2
, for l 6= r,7

(2.32) RicB̄2
(Yl, Yl) =

(n2−2)ϕ2,ylyl
+εl

∑n2
s=1 εsϕ2,ysys

ϕ2
− (n2 − 1)εl

∑n2

s=1

εsϕ2
2,ys

ϕ2
2

.8

Using (2.29) and (2.25) in the (2.12) and then using (2.30) and (2.26) in the (2.12) we9

obtain respectively:10

(2.33) RicM(Xi, Xj) =
(n1−2)ϕ1,xixj

ϕ1
− d

f
[f1,xixj

+
ϕ1,xj

ϕ1
f1,xi

+
ϕ1,xi

ϕ1
f1,xj

], for i 6= j,11

(2.34) RicM(Xi, Xi) =
(n1−2)ϕ1,xixi

+εi
∑n1

k=1 εkϕ1,xkxk

ϕ1
− (n1 − 1)εi

∑n1

k=1

εkϕ
2
1,xk

ϕ2
1

+12

− d
f
[f1,xixi

+ 2
ϕ1,xi

ϕ1
f1,xi
− εi

∑n1

k=1 εk
ϕ1,xk

ϕ1
f1,xk

],13

while, using (2.31) and (2.27) in the (2.13) and then using (2.32) and (2.28) in the (2.13)14

we obtain respectively:15

(2.35) RicM(Yl, Yr) =
(n2−2)ϕ2,ylyr

ϕ2
, for l 6= r,16

(2.36) RicM(Yl, Yl) =
(n2−2)ϕ2,ylyl

+εl
∑n2

s=1 εsϕ2,ysys

ϕ2
− (n2 − 1)εl

∑n2

s=1

εsϕ2,ys

ϕ2
2

.17

18

Now considering:19

(2.37) RicF = 0,20

(2.38) gM(Ui, Uj) = f 2gF (Ui, Uj), with f = f1 + f2,21

(2.39) ∆2̄(f2) = 022

(2.40) ∆1̄(f1) = ϕ2
1

∑n1

k=1 εkf1,xkxk
− (n1 − 2)ϕ1

∑n1

k=1 εkϕ1,xk
f1,xk

,23

(2.41) gM(∇f,∇f) = ϕ2
1

∑n1

k=1 εkf
2
1,xk

+ ϕ2
2

∑n2

s=1 εsf
2
2,ys

,24

and by replacing them in (2.17):25

(2.42) RicM(Ui, Uj) = {−fϕ2
1

∑n1

k=1 εkf1,xkxk
+ (n1 − 2)fϕ1

∑n1

k=1 εkϕ1,xk
f1,xk

+26

−(d− 1)(ϕ2
1

∑n1

k=1 εkf
2
1,xk

+ ϕ2
2

∑n2

s=1 εsf
2
2,ys

)}gF (Ui, Uj).27

28

Using the equations (2.33), (2.34), (2.35), (2.36) and (2.42), it follows that (M, gM) is an29

Einstein manifold if and only if, the equations (I), (II), (III), (IV), (V) are satisfied. �30

31

3. The positive constant Ricci curvature case (λ > 0)32

33
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In this section we look for the existence of a solution to the positive constant Ricci cur-1

vature case (λ > 0) when the base-manifold is the product of two conformal manifolds2

to a n1-dimensional and n2-dimensional pseudo-Euclidean space, respectively, invariant3

under the action of a (n1 − 1)-dimensional group of transformations and that the fiber4

F is flat.5

6

Theorem 3.1: Let (B, gB), be the base-manifold B = (B1 × B2), B1 = Rn1, with7

coordinates (x1, x2, ..xn1), B2 = Rn2, with coordinates (y1, y2, ..yn2), where n1, n2 ≥ 3,8

and let gB = gB1 + gB2 be the metrics on B, where gB1 = εiδij and gB2 = εlδlr.9

Let f1 : Rn1 → R, f2 : Rn2 → R, ϕ1 : Rn1 → R and ϕ2 : Rn2 → R, be smooth functions10

f1(ξ1), f2(ξ2), ϕ1(ξ2) and ϕ2(ξ2), such that f(ξ1, ξ2) = f1(ξ1) + f2(ξ2) be as in Definition11

1.1, where ξ1 =
∑n1

i=1 αixi, αi ∈ R, and
∑

i εiα
2
i = εi0 or

∑
i εiα

2
i = 0, and by the same12

token ξ2 =
∑n2

l=1 αlyl, αl ∈ R, and
∑

l εlα
2
l = εl0 or

∑
l εlα

2
l = 0.13

Finally, let (M, gM) be ((B1 × B2) ×f=f1+f2 F, gM), with gM = ḡB + (f1 + f2)2gF , with14

conformal metric ḡB = ḡB1 + ḡB2, where ḡB1 = 1
ϕ2

1
gB1, ḡB2 = 1

ϕ2
2 gB2, and F = Rd with15

gF = −δab.16

Then, whenever
∑

i εiα
2
i = εi0 (and

∑
l εlα

2
l = εl0), the warped-product metric17

gM = ḡB + (f1 + f2)2gF is Einstein with constant Ricci curvature λ if and only if the18

functions f1, f2, ϕ1 and ϕ2 satisfy the following conditions:19

20

(Ia) (n1 − 2)fϕ′′1 − ϕ1f
′′
1 d− 2ϕ′1f

′
1d = 0, for i 6= j,21

22

(IIa) ϕ′′2 = 0, for l 6= r,23

(IIIa)
∑

k εkα
2
k[fϕ1ϕ

′′
1 − (n1 − 1)fϕ′21 + ϕ1ϕ

′
1f
′
1d] = λf ,24

25

(IVa)
∑

s εsα
2
s[−(n2 − 1)ϕ′22 ] = λ26

27

(Va)
∑

k εkα
2
k[−fϕ2

1f
′′
1 + (n1 − 2)fϕ1ϕ

′
1f
′
1 − (d− 1)ϕ2

1f
′2
1 ]+28

−
∑

s εsα
2
s[(d− 1)ϕ2

2f
′2
2 ] = λf 2.29

30

Proof. We have:31

ϕ1,xixj
= ϕ′′1αiαj, ϕ1,xi

= ϕ′1αi, f1,xixj
= f ′′1αiαj, f1,xi

= f ′1αi,
32

and
33

ϕ2,ylyr
= ϕ′′2αlαr, ϕ2,yl

= ϕ′2αl, f2,ylyr
= f ′′2αlαr, f2,yl

= f ′2αl.34

35
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Substituting these in (I) and (II) and if i 6= j and l 6= r such that αiαj 6= 0 and1

αlαr 6= 0, we obtain (Ia) and (IIa).2

In the same manner for (III) and (IV), by considering the relation between ϕ′′1 and f ′′13

from (Ia) and ϕ′′2 = 0 from (IIa), we get (IIIa) and (IVa) respectively. Analogously, the4

equation (V) reduces to (Va). �5

6

Now we are going to look for the existence of a solution to the positive constant Ricci7

curvature case (λ > 0), considering f2(ξ2) = 1, and dim(B1) = dim(F ), i.e., n1 = d . So,8

whenever
∑n1

i=1 α
2
i εi 6= 0, without loss of generality, we may consider

∑n1

i=1 α
2
i εi = −19

(the same for
∑n2

l=1 α
2
l εl 6= 0, in which we consider

∑n2

l=1 α
2
l εl = −1).10

In this way the equations (Ia), (IIa), (IIIa), (IVa) (Va) become:11

12

(Ib) (n1 − 2)(f1 + 1)ϕ′′1 − n1ϕ1f
′′
1 − 2n1ϕ

′
1f
′
1 = 0, for i 6= j,13

14

(IIb) ϕ′′2 = 0, for l 6= r,15

16

(IIIb) −(f1 + 1)ϕ1ϕ
′′
1 + (n1 − 1)(f1 + 1)ϕ′21 − n1ϕ1ϕ

′
1f
′
1 = λ(f1 + 1),17

18

(IVb) (n2 − 1)ϕ′22 = λ,19

20

(Vb) (f1 + 1)ϕ2
1f
′′
1 − (n1 − 2)(f1 + 1)ϕ1ϕ

′
1f
′
1 + (n1 − 1)ϕ2

1f
′2
1 = λ(f1 + 1)2.21

22

Note that since f2(ξ2) = constant, then the equations (2.27) and (2.28), concerning23

the condition Hess2̄(f2) = 0, are obviously satisfied.24

It is worth noticing that there is no reason to believe that any nontrivial solutions25

exist, since the system is overdetermined. One must first check out the compatibil-26

ity conditions and fortunately this is easy to figure out. Changing the notation: from27 (
ξ1, ϕ1(ξ1), f1(ξ1)

)
, to

(
t, β(t), γ(t)−1

)
(in order to simplify the writing and avoid con-28

fusion with the indexes), and also writing λ = qm2/2 > 0, where q = n1, i.e. dim(B1),29

our system of equations then becomes:30

31

(3.1)


(q − 2)γβ′′ − qβγ′′ − 2qβ′γ′ = 0

−βγβ′′ − (q − 1)γβ′2 − qβ′γ′ − 1
2
qm2γ = 0

γβ2γ′′ − (q − 2)βγβ′γ′ + (q − 1)β2γ′2 − 1
2
qm2γ2 = 032

33

So, if we solve the second and third equations for β′′ and γ′′ and substituting them34



[A fam. of spec. sequent. warped-prod. manifolds semi-Riemann Einstein metrics] 11

into the first equation, we note that the first equation can be replaced by a first order1

equation, that is:2

3

(3.2) (q−2)γ2β′2 − 2qβγβ′γ′ + qβ2γ′2 − qm2γ2 =: Z(β, γ, β′, γ′) = 0.4

5

Now, differentiating Z with respect to t and then eliminating β′′ and γ′′ using the sec-6

ond and third equations of (3.1), the resulting expression in (β, γ, β′, γ′) is a multiple7

of Z(β, γ, β′, γ′). This shows us that the combined system of equations (3.1) and (3.2)8

satisfies the compatibility conditions, so that the system has solutions, specifically, a9

3-parameter family of them.10

If we want to describe these solutions more explicitly, we must note that the equations11

are t-autonomous and have a 2-parameter family of scaling symmetries. In particular,12

the equations are invariant under the 3-parameter group of transformations of the form:13

14

(3.3) Φa,b,c(t, β, γ) = (at+c, aβ, bγ)15

16

where a and b are nonzero constants and c is any constant. In fact, the equation (3.2)17

implies that there is a function ω(t) such that18

19

(3.4)


β′ = 2mqω(ω−1)(

(q−2)ω2−2qω+q
)

γ′ =
mγ
(

(q−2)ω2−q
)

β
(

(q−2)ω2−2qω+q
)

20
21

and then the second and third equations of (3.1) imply that ω must satisfy22

(3.5) ω′ =
m
(
q+2qω−(3q−2)ω2

)
β

.23

24

Conversely, the combined system of (3.4) and (3.5) gives the general solution of the25

original system. This latter system is easily integrated by the usual separation of vari-26

ables method, i.e., by eliminating t yields a system of the form:27

28

(3.6) dβ
β

= R(ω)dω29

and30

(3.7) dγ
γ

= S(ω)dω31

32

where R(ω) and S(ω) are rational functions of ω. Writing β and γ as elementary func-33

tions of ω, then we can also write:34
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1

(3.8) dt = βT (ω)dω,2

3

where T is a rational function of ω, so that t can be written as a function of ω by4

quadrature. Thus, we have the integral curves in (t, β, γ, ω)-space in terms of explicit5

functions.6

7

In conclusion (because of the 3-parameter family of equivalences of solutions), we can say8

that in certain sense, these solutions are all equivalent to a finite number of possibilities.9

10

Remarks: As is well known, an Einstein warped product manifold with Riemannian-11

metric and Ricci-flat fiber-manifold can only admit zero or negative Ricci tensor, Ric ≤ 0.12

Here we have shown, that a simple pseudo-Riemannian metric construction allows, an13

Einstein warped product manifold with Ricci-flat fiber-manifold, to obtain Ric > 0, and14

this may find interest, for example, in how to build warped-product spacetime models,15

with positive curvature, whose fiber is Ricci-flat.16

17

18
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