Kähler-like conditions and Vaisman metrics

Anna Fino

Dipartimento di Matematica Universitá di Torino

"Conformal structures in Geometry", in honour of Liviu Ornea's 60th birthday 16 July 2020

- 4 同 6 4 日 6 4 日 6

2 Link with Vaisman metrics on complex surfaces

<ロ> (日) (日) (日) (日) (日)

æ

Gauduchon connections

On any Hermitian manifold (M^{2n}, J, g) there exists an affine line of canonical Hermitian connections ∇^t ($\nabla^t J = 0$, $\nabla^t g = 0$), completely determined by their torsion

$$T(X,Y,Z) := g(T(X,Y),Z).$$

The family includes:

- the Chern connection ∇^{Ch} (*T* has trivial (1,1)-component)
- the Bismut (or Strominger) connection ∇^{B} (*T* is a 3-form)

- 4 同 6 4 日 6 4 日 6

Bismut and Chern connections

Remark

 ∇^{Ch} and ∇^{B} are related to the Levi-Civita connection ∇^{LC} by

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2} d^c \omega(X, Y, Z),$$

$$g(\nabla_X^{Ch} Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2} d\omega(JX, Y, Z),$$

where $d^{c} = -J^{-1}dJ$ and ω is the associated fundamental form.

Remark

The trace of the torsion of ∇^{Ch} is equal to the Lee form $\theta := Jd^*\omega$, which is the unique 1-form satisfying

$$d\omega^{n-1} = \theta \wedge \omega^{n-1}.$$

イロト イポト イヨト イヨト

SKT metrics

$$abla^{B} =
abla^{LC} \iff (M^{2n}, J, g)$$
 is Kähler

Definition

A Hermitian metric g on (M^{2n}, J) is said to be strong Kähler with torsion (SKT) or pluriclosed if dT = 0, i.e. if $\partial \overline{\partial} \omega = 0$.

Definition

A Hermitian metric ω is called Gauduchon if $dd^c \omega^{n-1} = 0$, or equivalently if $d^*\theta = 0$.

Remark

For n = 2 Gauduchon and SKT metrics coincide!

・ロン ・回と ・ヨン ・ヨン

Kähler-like conditions

Remark

In general ∇^B does not satisfy the first Bianchi identity, since

$$\sigma_{X,Y,Z} R^B(X,Y,Z,U) = dT^B(X,Y,Z,U) + (\nabla^B_U T^B)(X,Y,Z) - \sigma_{X,Y,Z} g(T^B(X,Y),T^B(Z,U)).$$

Definition

 ∇^{B} is Kähler-like if it satisfies the first Bianchi identity

$$\sigma_{X,Y,Z} R^B(X,Y,Z) = 0$$

and the type condition

$$R^{B}(X, Y, Z, W) = R^{B}(JX, JY, Z, W), \forall X, Y, Z, W$$

・ロン ・回と ・ヨン ・ヨン

Э

Conjecture (Angella, Otal, Ugarte, Villacampa)

If for a Hermitian manifold (M^{2n}, J, g) the Bismut connection ∇^{B} is Kähler-like, then g is SKT.

• If ∇^B is flat and M is compact, then M admits as finite unbranched cover, a local Samelson space, given by the product of a compact semisimple Lie group and a torus [Q. Wang, B. Yang, F. Zheng].

• The conjecture is true for 6-dimensional compact solvmanifolds with holomorphically trivial canonical bundle [Angella, Otal, Ugarte, Villacampa].

- 4 同 6 4 日 6 4 日 6

Problem

Study the relations between the first Bianchi identity for ∇^B , the SKT condition and the parallelism of T^B .

Theorem (F, Tardini)

Let M^{2n} be a complex manifold with a SKT metric g.

- If ∇^B satisfies the first Bianchi identity, then $\nabla^B T^B = 0$.
- If $\nabla^B T^B = 0$, then ∇^B satisfies the first Bianchi identity \iff g is SKT.

As a consequence:

Corollary (F, Tardini)

Let (M^{2n}, J, g) be a Hermitian manifold such that ∇^B satisfies the first Bianchi identity. Then $\nabla^B T^B = 0 \iff g \text{ is SKT}.$

In relation to the Levi-Civita connection

Theorem (F, Tardini)

Let (M^{2n}, J, g) be a Hermitian manifold. If ∇^B satisfies the first Bianchi identity and g is SKT, then $\nabla^{LC} T^B = 0$.

Vaisman metrics

Definition

A Hermitian metric g on a complex manifold M^{2n} is a Vaisman metric if $d\omega = \theta \wedge \omega$, for some *d*-closed 1-form θ with $\nabla^{LC}\theta = 0$.

- Vaisman metrics are Gauduchon and $|\theta|$ is constant.
- If n = 2, then $T^B = * \theta$.

Theorem (F, Tardini)

Let (M, J, g) be a Hermitian surface. Then, g is Vaisman if and only if g is SKT and ∇^B satisfies the first Bianchi identity.

Pluriclosed flow

Let (M^{2n}, J, g_0) be an Hermitian manifold. Streets and Tian introduced the flow

$$rac{\partial \omega(t)}{\partial t} = -(
ho^B)^{1,1}(\omega(t)), \quad \omega(0) = \omega_0.$$

Theorem (Streets, Tian)

Let (M^{2n}, J) be a compact complex manifold. If ω_0 is SKT, then $\exists \epsilon > 0$ and a unique solution $\omega(t)$ to the pluriclosed flow with initial condition ω_0 . If ω_0 is Kähler, then $\omega(t)$ is the unique solution to the Kähler-Ricci flow with initial data ω_0 .

イロン イヨン イヨン イヨン

Problem

Study the behaviour of the Vaisman condition along the pluriclosed flow.

Theorem (F, Tardini)

Let M be a compact complex surface admitting a Vaisman metric ω_0 with constant scalar curvature, then the pluriclosed flow starting with ω_0 preserves the Vaisman condition.

We use that, if (M, J, g) is a compact Vaisman surface, then $\rho^{Ch} = h \, dJ\theta$, for some $h \in C^{\infty}$. Moreover, Scal(g) is constant if and only if h is constant and, in such a case $c_1(M) = 0$.

(4月) (日) (日)

HAPPY BIRTHDAY, LIVIU! LA MULTI ANI, LIVIU!!

(4回) (4回) (4回)

æ